RESUMO
We have previously identified increased levels of distinct bacterial taxa within mucosal biopsies from colorectal cancer (CRC) patients. Following prior research, the aim of this study was to investigate the detection of the same CRC-associated bacteria in fecal samples and to evaluate the suitability of fecal samples as a non-invasive material for the detection of CRC-associated bacteria. Next-generation sequencing (NGS) of the 16S ribosomal RNA (rRNA) V4 region was performed to evaluate the detection of the CRC-associated bacteria in the fecal microbiota of cancer patients, patients with adenomatous polyp and healthy controls. Furthermore, 19 novel species-specific quantitative PCR (qPCR) assays were established to detect the CRC-associated bacteria. Approximately, 75% of the bacterial taxa identified in biopsies were reflected in fecal samples. NGS failed to detect low-abundance CRC-associated taxa in fecal samples, whereas qPCR exhibited high sensitivity and specificity in identifying all targeted taxa. Comparison of fecal microbial composition between the different patient groups showed enrichment of Fusobacterium nucleatum, Parvimonas micra, and Gemella morbillorum in cancer patients. Our findings suggest that low-abundance mucosa-associated bacteria can be detected in fecal samples using sensitive qPCR assays.
RESUMO
An important challenge relating to clinical diagnostics of the foodborne pathogen Shiga toxin-producing E. coli (STEC), is that PCR-detection of the shiga-toxin gene (stx) in DNA from stool samples can be accompanied by a failure to identify an STEC isolate in pure culture on agar. In this study, we have explored the use of MinION long-read sequencing of DNA from bacterial culture swipes to detect the presence of STEC, and bioinformatic tools to characterize the STEC virulence factors. The online workflow "What's in my pot" (WIMP) in the Epi2me cloud service, rapidly identified STEC also when it was present in culture swipes together with multiple other E. coli serovars, given sufficient abundance. These preliminary results provide useful information about the sensitivity of the method, which has potential to be used in clinical diagnostic of STEC, particularly in cases where a pure culture of the STEC isolate is not obtained due to the 'STEC lost Shiga toxin' phenomenon.
Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Sorogrupo , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Toxina Shiga I/genética , Toxina Shiga/genética , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Proteínas de Transporte/genéticaRESUMO
Accumulating evidence has related the gut microbiota to colorectal cancer (CRC). Fusobacterium nucleatum has repeatedly been linked to colorectal tumorigenesis. The aim of this study was to investigate microbial composition in different sampling sites, in order to profile the microbial dynamics with CRC progression. Further, we characterized the tumor-associated F. nucleatum subspecies. Here, we conducted Illumina Miseq next-generation sequencing of the 16S rRNA V4 region in biopsy samples, to investigate microbiota alterations in cancer patients, patients with adenomatous polyp, and healthy controls in Norway. Further, Fusobacterium positive tumor biopsies were subjected to MinION nanopore sequencing of Fusobacterium-specific amplicons to characterize the Fusobacterium species and subspecies. We found enrichment of oral biofilm-associated bacteria, Fusobacterium, Gemella, Parvimonas, Granulicatella, Leptotrichia, Peptostreptococcus, Campylobacter, Selenomonas, Porphyromonas, and Prevotella in cancer patients compared to adenomatous polyp patients and control patients. Higher abundance of amplicon sequence variants (ASVs) classified as Phascolarctobacterium, Bacteroides vulgatus, Bacteroides plebeius, Bacteroides eggerthii, Tyzzerella, Desulfovibrio, Frisingicoccus, Eubacterium coprostanoligenes group, and Lachnospiraceae were identified in cancer and adenomatous polyp patients compared to healthy controls. F. nucleatum ssp. animalis was the dominating subspecies. F. nucleatum ssp. nucleatum, F. nucleatum ssp. vincentii, Fusobacterium pseudoperiodonticum, Fusobacterium necrophorum, and Fusobacterium gonidiaformans were identified in five samples. Several biofilm-associated bacteria were enriched at multiple sites in cancer patients. Another group of bacteria was enriched in both cancer and polyps, suggesting that they may have a role in polyp development and possibly early stages of CRC.
Assuntos
Pólipos Adenomatosos , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Fusobacterium nucleatum/genética , Bactérias/genética , Carcinogênese , Neoplasias Colorretais/patologiaRESUMO
Skeletal muscle plays an important role in glycaemic control and metabolic homeostasis, making it a tissue of interest with respect to type 2 diabetes mellitus. The aim of the present study was to determine if ligands of Toll-like receptors (TLRs) could have an impact on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. The myotubes expressed mRNA for TLRs 1-6. TLR3, TLR4, TLR5 and TLR6 ligands (TLRLs) increased glucose metabolism. Furthermore, TLR4L and TLR5L increased oleic acid metabolism. The metabolic effects of TLRLs were not evident until after at least 24 h pre-incubation of the cells and here the metabolic effects were more evident for the metabolism of glucose than oleic acid, with a shift towards effects on oleic acid metabolism after chronic exposure (168 h). However, the stimulatory effect of TLRLs on myokine expression and secretion was detected after only 6 h, where TLR3-6L stimulated secretion of interleukin-6 (IL-6). TLR5L also increased secretion of interleukin-8 (IL-8), while TLR6L also increased secretion of granulocyte-macrophage colony stimulating factor (GM-CSF). Pre-incubation of the myotubes with IL-6 for 24 h increased oleic acid oxidation but had no effect on glucose metabolism. Thus IL-6 did not mimic all the metabolic effects of the TLRLs, implying metabolic effects beyond the actions of this myokine.
Assuntos
Citocinas/biossíntese , Metabolismo Energético , Interleucina-6/metabolismo , Ligantes , Músculo Esquelético/metabolismo , Receptores Toll-Like/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Imunidade Inata , Fibras Musculares Esqueléticas/metabolismo , Ácido Oleico/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/metabolismoRESUMO
There is a growing awareness of the importance of indoor microbiomes for human health. Given their complexity, these microbiomes can only be adequately surveyed using high throughput sequencing techniques. Oxford Nanopore's MinION is the newest third generation sequencing technology on the market. With its many advantages such as portability, user friendliness, simplicity, speed of sequencing and long read length, the technology is now an actual contender to established sequencing platforms. MinION's main disadvantage is a relatively low read accuracy compared to several other platforms, although this is constantly improving. The present study, which appears to be the first of its kind, provides the results of a preliminary analysis of the microbial communities in indoor environments based on 16S rRNA gene amplicon sequencing, using both the Oxford Nanopore Technologies (ONT) MinIOn and the Illumina MiSeq DNA sequencers. At the level of family and above, there was no significant difference between the microbial compositions as revealed by the two platforms. However, at the genus, and particularly at the species level, the ONT MinION reported greater taxonomic resolution than Illumina MiSeq.
Assuntos
Microbiologia do Ar , Poluentes Ambientais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Poeira , Humanos , Noruega , Casas de Saúde , Instituições Acadêmicas , Análise de Sequência de DNARESUMO
Through a culture-based approach using sludge from drinking water treatment plants, this study reports on the presence of aminoglycoside resistant bacteria at 23 different geographical locations in Norway. Sludge samples are derived from a large environmental area including drinking water sources and their surrounding catchment areas. Aminoglycoside resistant bacteria were detected at 18 of the sample sites. Only five samples did not show any growth of isolates resistant to the selected aminoglycosides, kanamycin and gentamycin. There was a statistically significant correlation between the numbers of kanamycin and gentamycin resistant bacteria isolated from the 23 samples, perhaps suggesting common determinants of resistance. Based on 16S rRNA sequencing of 223 aminoglycoside resistant isolates, three different genera of Bacteroidetes were found to dominate across samples. These were Flavobacterium, Mucilaginibacter and Pedobacter. Further phenotypic and genotypic analyses showed that efflux pumps, reduced membrane permeability and four assayed genes coding for aminoglycoside modifying enzymes AAC(6')-Ib, AAC(3')-II, APH(3')-II, APH(3')-III, could only explain the resistance of a few of the isolates selected for testing. aph(3')-II was detected in 1.6% of total isolates, aac(6')-Ib and aph(3')-III in 0.8%, while aac(3')-II was not detected in any of the isolates. The isolates, for which potential resistance mechanisms were found, represented 13 different genera suggesting that aminoglycoside resistance is widespread in bacterial genera indigenous to sludge. The present study suggests that aminoglycoside resistant bacteria are present in Norwegian environments with limited anthropogenic exposures. However, the resistance mechanisms remain largely unknown, and further analyses, including culture-independent methods, could be performed to investigate other potential resistance mechanisms. This is, to our knowledge, the first large scale nationwide investigation of aminoglycoside resistance in the Norwegian environment.
RESUMO
PCR-based testing for Shiga toxin producing Escherichia coli (STEC) directly from fecal samples is increasingly being implemented in routine diagnostic laboratories. These methods aim to detect clinically relevant amounts of microbes and not stx-carrying phages or low backgrounds of STEC. We present a diagnostic procedure and results from 1 year of stx-targeted real-time PCR of fecal samples from patients with gastrointestinal symptoms in Norway. A rapid stx2 subtyping strategy is described, which aims to quickly reveal the virulence potential of the microbe. stx was detected in 22 of 3320 samples, corresponding to a PCR positive rate of 0.66%. STEC were cultured from 72% of the PCR positive samples. Four stx1 isolates, eight stx2 isolates, and four isolates with both stx1 and stx2 were identified. With the method presented, stx-carrying phages are not commonly detected. Our results support the use of molecular testing combined with classical culture techniques for routine diagnostic purposes.
Assuntos
Fezes/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/diagnóstico , Microbiologia de Alimentos , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Toxina Shiga I/biossíntese , Toxina Shiga II/biossíntese , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/isolamento & purificaçãoRESUMO
Rapid screening of methicillin-resistant Staphylococcus aureus (MRSA) colonization prior to hospital admittance is important to reduce nosocomial infections and health care costs. Molecular detection of mecA and S. aureus specific target genes has become widely established for this purpose. However, there are still limitations in potential for high-throughput screening in the methods described. We have compared the time aspects and workload of four different DNA preparation platforms, resulting in an automated and simple MRSA screening method which combines two liquid handling systems and a simple lysis buffer. We have further transferred our in-house dual real-time PCR to a fast-PCR protocol, reducing the time and labour spent on these samples to a minimum.
Assuntos
Proteínas de Bactérias/isolamento & purificação , Ensaios de Triagem em Larga Escala , Staphylococcus aureus Resistente à Meticilina/genética , Nuclease do Micrococo/isolamento & purificação , Reação em Cadeia da Polimerase/economia , Antibacterianos/uso terapêutico , Automação Laboratorial , Proteínas de Bactérias/genética , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Nuclease do Micrococo/genética , Proteínas de Ligação às Penicilinas , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Manejo de Espécimes , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologiaRESUMO
The cold-water-fish pathogen Vibrio salmonicida expresses a functional bacterial luciferase but produces insufficient levels of its aliphatic-aldehyde substrate to be detectably luminous in culture. Our goals were to (i) better explain this cryptic bioluminescence phenotype through molecular characterization of the lux operon and (ii) test whether the bioluminescence gene cluster is associated with virulence. Cloning and sequencing of the V. salmonicida lux operon revealed that homologs of all of the genes required for luminescence are present: luxAB (luciferase) and luxCDE (aliphatic-aldehyde synthesis). The arrangement and sequence of these structural lux genes are conserved compared to those in related species of luminous bacteria. However, V. salmonicida strains have a novel arrangement and number of homologs of the luxR and luxI quorum-sensing regulatory genes. Reverse transcriptase PCR analysis suggests that this novel arrangement of quorum-sensing genes generates antisense transcripts that may be responsible for the reduced production of bioluminescence. In addition, infection with a strain in which the luxA gene was mutated resulted in a marked delay in mortality among Atlantic salmon relative to infection with the wild-type parent in single-strain challenge experiments. In mixed-strain competition between the luxA mutant and the wild type, the mutant was attenuated up to 50-fold. It remains unclear whether the attenuation results from a direct loss of luciferase or a polar disturbance elsewhere in the lux operon. Nevertheless, these findings document for the first time an association between a mutation in a structural lux gene and virulence, as well as provide a new molecular system to study Vibrio pathogenesis in a natural host.