RESUMO
Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. Methods: This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. Results: We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. Conclusion: These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
RESUMO
Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength and direction, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitating the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. However, axon morphologies of individual cells played a significant role in determining activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10 % higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
RESUMO
BACKGROUND: Intermittent theta burst stimulation (iTBS) when applied over the left dorsolateral prefrontal cortex (DLPFC) has been shown to be equally effective and safe to treat depression compared to traditional repetitive transcranial magnetic stimulation (rTMS) paradigms. This protocol describes a funded single-centre, double-blind, randomized placebo-controlled, clinical trial to investigate the antidepressive effects of iTBS and factors associated with an antidepressive response. METHODS: In this trial, outpatients (N = 96, aged 22-65 years) meeting the diagnostic criteria for at least moderate depression (Montgomery and Aasberg Depression Rating Scale score ≥ 20) will be enrolled prospectively and receive ten, once-a-day sessions of either active iTBS or sham iTBS to the left DLPFC, localized via a neuronavigation system. Participants may have any degree of treatment resistance. Prior to stimulation, participants will undergo a thorough safety screening and a brief diagnostic assessment, genetic analysis of brain-derived neurotropic factor, 5-HTTLPR and 5-HT1A, and cerebral MRI assessments. A selection of neuropsychological tests and questionnaires will be administered prior to stimulation and after ten stimulations. An additional follow-up will be conducted 4 weeks after the last stimulation. The first participant was enrolled on June 4, 2022. Study completion will be in December 2027. The project is approved by the Regional Ethical Committee of Medicine and Health Sciences, Northern Norway, project number 228765. The trial will be conducted according to Good Clinical Practice and published safety guidelines on rTMS treatment. DISCUSSION: The aims of the present trial are to investigate the antidepressive effect of a 10-session iTBS protocol on moderately depressed outpatients and to explore the factors that can explain the reduction in depressive symptoms after iTBS but also a poorer response to the treatment. In separate, but related work packages, the trial will assess how clinical, cognitive, brain imaging and genetic measures at baseline relate to the variability in the antidepressive effects of iTBS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05516095. Retrospectively registered on August 25, 2022.
Assuntos
Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal/fisiologia , Encéfalo , Método Duplo-Cego , Antidepressivos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Predictive processes and numerous cognitive, motor, and social skills depend heavily on sequence learning. The visuomotor Serial Reaction Time Task (SRTT) can measure this fundamental cognitive process. To comprehend the neural underpinnings of the SRTT, non-invasive brain stimulation stands out as one of the most effective methodologies. Nevertheless, a systematic list of considerations for the design of such interventional studies is currently lacking. To address this gap, this review aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) is a viable method of modulating visuomotor sequence learning and to identify the factors that mediate its efficacy. We systematically analyzed the eligible records (n = 17) that attempted to modulate the performance of the SRTT with rTMS. The purpose of the analysis was to determine how the following factors affected SRTT performance: (1) stimulated brain regions, (2) rTMS protocols, (3) stimulated hemisphere, (4) timing of the stimulation, (5) SRTT sequence properties, and (6) other methodological features. The primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) were found to be the most promising stimulation targets. Low-frequency protocols over M1 usually weaken performance, but the results are less consistent for the DLPFC. This review provides a comprehensive discussion about the behavioral effects of six factors that are crucial in designing future studies to modulate sequence learning with rTMS. Future studies may preferentially and synergistically combine functional neuroimaging with rTMS to adequately link the rTMS-induced network effects with behavioral findings, which are crucial to develop a unified cognitive model of visuomotor sequence learning.
RESUMO
Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings, in vivo depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.SIGNIFICANCE STATEMENT Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.
Assuntos
Citocinas , Microglia , Masculino , Feminino , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Encéfalo , Estimulação Magnética Transcraniana/métodos , Fenômenos MagnéticosRESUMO
Transcranial magnetic stimulation (TMS) can depolarize cortical neurons through the intact skin and skull. The characteristics of the induced electric field (E-field) have a major impact on specific outcomes of TMS. Using multi-scale computational modeling, we explored whether the stimulation parameters derived from the primary motor cortex (M1) induce comparable macroscopic E-field strengths and subcellular/cellular responses in the dorsolateral prefrontal cortex (DLPFC). To this aim, we calculated the TMS-induced E-field in 16 anatomically realistic head models and simulated the changes in membrane voltage and intracellular calcium levels of morphologically and biophysically realistic human pyramidal cells in the M1 and DLPFC. We found that the conventional intensity selection methods (i.e., motor threshold and fixed intensities) produce variable macroscopic E-fields. Consequently, it was challenging to produce comparable subcellular/cellular responses across cortical regions with distinct folding characteristics. Prospectively, personalized stimulation intensity selection could standardize the E-fields and the subcellular/cellular responses to repetitive TMS across cortical regions and individuals. The suggested computational approach points to the shortcomings of the conventional intensity selection methods used in clinical settings. We propose that multi-scale modeling has the potential to overcome some of these limitations and broaden our understanding of the neuronal mechanisms for TMS.
RESUMO
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
RESUMO
This study was conducted to provide a better understanding of the role of electric field strength in the production of aftereffects in resting state scalp electroencephalography by repetitive transcranial magnetic stimulation (rTMS) in humans. We conducted two separate experiments in which we applied rTMS over the left parietal-occipital region. Prospective electric field simulation guided the choice of the individual stimulation intensities. In the main experiment, 16 participants received rhythmic and arrhythmic rTMS bursts at between ca. 20 and 50 mv/mm peak absolute electric field intensities. In the control experiment, another group of 16 participants received sham rTMS. To characterize the aftereffects, we estimated the alpha power (8-14 Hz) changes recorded in the inter-burst intervals, i.e., from 0.2 to 10 s after rTMS. We found aftereffects lasting up to two seconds after stimulation with ca. 35 mV/mm. Relative to baseline, alpha power was significantly reduced by the arrhythmic protocol, while there was no significant change with the rhythmic protocol. We found no significant long-term, i.e., up to 10-second, differences between the rhythmic and arrhythmic stimulation, or between the rhythmic and sham protocols. Weak arrhythmic rTMS induced short-lived alpha suppression during the inter-burst intervals.
Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Lobo Parietal , Estudos ProspectivosRESUMO
Single-pulse and repetitive transcranial magnetic stimulation (rTMS) are used in clinical practice for diagnostic and therapeutic purposes. However, rTMS-based therapies that lead to a significant and sustained reduction in neuropsychiatric symptoms remain scarce. While it is generally accepted that the stimulation frequency plays a crucial role in producing the therapeutic effects of rTMS, less attention has been dedicated to determining the role of the electric field strength. Conventional threshold-based intensity selection approaches, such as the resting motor threshold, produce variable stimulation intensities and electric fields across participants and cortical regions. Insufficient standardization of electric field strength may contribute to the variability of rTMS effects and thus therapeutic success. Computational approaches that can prospectively optimize the electric field and standardize it across patients and cortical targets may overcome some of these limitations. Here, we discuss these approaches and propose that electric field standardization will be instrumental for translational science frameworks (e.g., multiscale modeling and basic science approaches) aimed at deciphering the subcellular, cellular, and network mechanisms of rTMS. Advances in understanding these mechanisms will be important for optimizing rTMS-based therapies in psychiatry.
RESUMO
Repetitive transcranial magnetic stimulation (rTMS) is an increasingly used, non-invasive brain stimulation technique in neuroscience research and clinical practice with a broad spectrum of suggested applications. Among other parameters, the choice of stimulus intensity and intracranial electric field strength substantially impacts rTMS outcome. This review provides a systematic overview of the intensity selection approaches and stimulation intensities used in human rTMS studies. We also examined whether studies report sufficient information to reproduce stimulus intensities for basic science research models. We performed a systematic review by focusing on original studies published between 1991 and 2020. We included conventional (e.g., 1 or 10 Hz) and patterned protocols (e.g., continuous or intermittent theta burst stimulation). We identified 3,784 articles in total, and we manually processed a representative portion (20%) of randomly selected articles. The majority of the analyzed studies (90% of entries) used the motor threshold (MT) approach and stimulation intensities from 80% to 120% of the MT. For continuous and intermittent theta burst stimulation, the most frequent stimulation intensity was 80% of the active MT. Most studies (92% of entries) did not report sufficient information to reproduce the stimulation intensity. Only a minority of studies (1.03% of entries) estimated the rTMS-induced electric field strengths. We formulate easy-to-follow recommendations to help scientists and clinicians report relevant information on stimulation intensity. Future standardized reporting guidelines may facilitate the use of basic science approaches aiming at better understanding the molecular, cellular, and neuronal mechanisms of rTMS.
Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Projetos de PesquisaRESUMO
Cognitive control is a mental process, which underlies adaptive goal-directed decisions. Previous studies have linked cognitive control to electrophysiological fluctuations in the θ band and θ-γ cross-frequency coupling (CFC) arising from the cingulate and frontal cortices. However, to date, the behavioral consequences of different forms of θ-γ CFC remain elusive. Here, we studied the behavioral effects of the θ-γ CFC via transcranial alternating current stimulation (tACS) designed to stimulate the frontal and cingulate cortices in humans. Using a double-blind, randomized, repeated measures study design, 24 healthy participants were subjected to three active and one control CFC-tACS conditions. In the active conditions, 80-Hz γ tACS was coupled to 4-Hz θ tACS. Specifically, in two of the active conditions, short γ bursts were coupled to the delivered θ cycle to coincide with either its peaks or troughs. In the third active condition, the phase of a θ cycle modulated the amplitude of the γ oscillation. In the fourth, control protocol, 80-Hz tACS was continuously superimposed over the 4-Hz tACS, therefore lacking any phase specificity in the CFC. During the 20 min of stimulation, the participants performed a Go/NoGo monetary reward-based and punishment-based instrumental learning task. A Bayesian hierarchical logistic regression analysis revealed that relative to the control, the peak-coupled tACS had no effects on the behavioral performance, whereas the trough-coupled tACS and, to a lesser extent, amplitude-modulated tACS reduced performance in conflicting trials. Our results suggest that cognitive control depends on the phase specificity of the θ-γ CFC.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Teorema de Bayes , Cognição , Lobo Frontal , Humanos , RecompensaRESUMO
Repetitive transcranial magnetic stimulation (rTMS) is a potent tool for modulating endogenous oscillations in humans. The current standard method for rTMS defines the stimulation intensity based on the evoked liminal response in the visual or motor system (e.g., resting motor threshold). The key limitation of the current approach is that the magnitude of the resulting electric field remains elusive. A better characterization of the electric field strength induced by a given rTMS protocol is necessary in order to improve the understanding of the neural mechanisms of rTMS. In this study we used a novel approach, in which individualized prospective computational modeling of the induced electric field guided the choice of stimulation intensity. We consistently found that rhythmic rTMS protocols increased neural synchronization in the posterior alpha frequency band when measured simultaneously with scalp electroencephalography. We observed this effect already at electric field strengths of roughly half the lowest conventional field strength, which is 80% of the resting motor threshold. We conclude that rTMS can induce immediate electrophysiological effects at much weaker electric field strengths than previously thought.
Assuntos
Encéfalo/fisiologia , Eletricidade , Estimulação Magnética Transcraniana , Adulto , Ritmo alfa/fisiologia , Artefatos , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Adulto JovemRESUMO
Transcranial direct current stimulation (tDCS) has been proposed to be able to modulate different cognitive functions. However, recent meta-analyses conclude that its efficacy is still in question. Recently, an increase in subjects' propensity to mind-wander has been reported as a consequence of anodal stimulation of the left dorsolateral prefrontal cortex (Axelrod et al., Proceedings of the National Academy of Sciences of the United States of America, 112, 2015). In addition, an independent group found a decrease in mind wandering after cathodal stimulation of the same region. These findings seem to indicate that high-level cognitive processes such as mind wandering can reliably be influenced by non-invasive brain stimulation. However, these previous studies used low sample sizes and are as such subject to concerns regarding the replicability of their findings. In this registered report, we implement a high-powered replication of Axelrod et al. (2015) finding that mind-wandering propensity can be increased by anodal tDCS. We used Bayesian statistics and a preregistered sequential-sampling design resulting in a total sample size of N = 192 participants collected across three different laboratories. Our findings show support against a stimulation effect on self-reported mind-wandering scores. The effect was small, in the opposite direction as predicted and not reliably different from zero. Using a Bayes Factor specifically designed to test for replication success, we found strong evidence against a successful replication of the original study. Finally, even when combining data from both the original and replication studies, we could not find evidence for an effect of anodal stimulation. Our results underline the importance of designing studies with sufficient power to detect evidence for or against behavioural effects of non-invasive brain stimulation techniques, preferentially using robust Bayesian statistics in preregistered reports.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Atenção , Teorema de Bayes , Humanos , Córtex Pré-FrontalRESUMO
BACKGROUND: Long-term recognition memory depends both on initial encoding and on subsequent recognition processes. OBJECTIVE: In this study we aimed at improving long-term memory by modulating posterior parietal brain activity during the encoding process. If this area is causally involved in memory encoding, its facilitation should lead to behavioral improvement. Based on the dual-process memory framework, we also expected that the neuromodulation would dissociate subsequent familiarity-based and recollection-based recognition. METHODS: We investigated the role of the posterior parietal brain oscillations in facial memory formation in three separate experiments using electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and model-driven, multi-electrode transcranial alternating current stimulation (tACS). RESULTS: Using fMRI and EEG, we confirmed that the right posterior parietal cortex is an essential node that promotes the encoding of long-term memories. We found that single-trial low theta power in this region predicts subsequent long-term recognition. On this basis, we fine-tuned the spatial and frequency settings of tACS during memory encoding. Model-driven tACS over the right posterior brain area augmented subsequent long-term recognition memory and particularly the familiarity of the observed stimuli. The recollection process, and short-term task performance as control remained unchanged. Control stimulation over the left hemisphere had no behavioral effect. CONCLUSION: We conclude that the right posterior brain area is crucial in long-term memory encoding.
Assuntos
Memória de Longo Prazo , Modelos Neurológicos , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that is frequently used to study cortical excitability changes and their impact on cognitive functions in humans. While most stimulators are capable of operating in double-blind mode, the amount of discomfort experienced during tDCS may break blinding. Therefore, specifically designed sham stimulation protocols are being used. The "fade-in, short-stimulation, fade-out" (FSF) protocol has been used in hundreds of studies and is commonly believed to be indistinguishable from real stimulation applied at 1 mA for 20 min. We analysed subjective reports of 192 volunteers, who either received real tDCS (n = 96) or FSF tDCS (n = 96). Participants reported more discomfort for real tDCS and correctly guessed the condition above chance-level. These findings indicate that FSF does not ensure complete blinding and that better active sham protocols are needed.
Assuntos
Conscientização , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Dor , Percepção , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto JovemRESUMO
Inactive interventions can have significant effects on cognitive performance. Understanding the generation of these cognitive placebo/nocebo effects is crucial for evaluating the cognitive impacts of interventional methods, such as non-invasive brain stimulation (NIBS). We report both cognitive placebo and nocebo effects on reward-based learning performance induced using an active sham NIBS protocol, verbal suggestions and conditioning in 80 healthy participants. Whereas our placebo manipulation increased both expected and perceived cognitive performance, nocebo had a detrimental effect on both. Model-based analysis suggests manipulation-specific strategic adjustments in learning-rates: Participants in the placebo group showed stronger learning from losses and reduced behavioral noise, participants in the nocebo group showed stronger learning from gains and increased behavioral noise. We conclude that experimentally induced expectancy can impact cognitive functions of healthy adult participants. This has important implications for the use of double-blind study designs that can effectively maintain blinding in NIBS studies.
Assuntos
Cognição , Modelos Teóricos , Efeito Nocebo , Efeito Placebo , Adulto , Algoritmos , Voluntários Saudáveis , Humanos , Masculino , Adulto JovemRESUMO
The ability to simultaneously process and maintain multiple pieces of information is limited. Over the past 50 years, observational methods have provided a large amount of insight regarding the neural mechanisms that underpin the mental capacity that we refer to as "working memory." More than 20 years ago, a neural coding scheme was proposed for working memory. As a result of technological developments, we can now not only observe but can also influence brain rhythms in humans. Building on these novel developments, we have begun to externally control brain oscillations in order to extend the limits of working memory.
Assuntos
Encéfalo , Memória de Curto Prazo , HumanosRESUMO
BACKGROUND: Phase-amplitude cross-frequency coupling (PAC) is characterized by the modulation of the power of a fast brain oscillation (e.g., gamma) by the phase of a slow rhythm (e.g., theta). PAC in different sub- and neocortical regions is known to underlie effective neural communication and correlates with successful long-term memory formation. OBJECTIVE/HYPOTHESIS: The present work aims to extend earlier observational data, by probing the functional role of theta-gamma PAC in the left temporal cortex in humans during verbal long-term memory encoding. METHODS: In three double-blinded, placebo-controlled experiments (nâ¯=â¯72), we employed cross-frequency transcranial alternating current stimulation (tACS) to externally modulate ongoing PAC during a verbal-associative learning task. Three types of cross-frequency tACS protocols were used: bursts of high gamma tACS were coupled to the peak or trough of the theta tACS cycle, and a control condition where gamma tACS was continuously superimposed at theta tACS cycles. RESULTS: Gamma bursts coupled to the trough of theta tACS induced robust behavioral impairment in memory performance (pâ¯<â¯.01), whereas gamma burst coupled to the peak or continuously superimposed with theta tACS had no significant behavioral effects. CONCLUSIONS: Our results demonstrate direct evidence regarding the importance of theta-gamma coupling in verbal long-term memory formation.
Assuntos
Ritmo Gama/fisiologia , Memória de Longo Prazo/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta/fisiologia , Adolescente , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua , Adulto JovemRESUMO
According to the placebo-reward hypothesis, placebo is a reward-anticipation process that increases midbrain dopamine (DA) levels. Reward-based learning processes, such as reinforcement learning, involves a large part of the DA-ergic network that is also activated by the placebo intervention. Given the neurochemical overlap between placebo and reward learning, we investigated whether verbal instructions in conjunction with a placebo intervention are capable of enhancing reward learning in healthy individuals by using a monetary reward-based reinforcement-learning task. Placebo intervention was performed with non-invasive brain stimulation techniques. In a randomized, triple-blind, cross-over study we investigated this cognitive placebo effect in healthy individuals by manipulating the participants' perceived uncertainty about the intervention's efficacy. Volunteers in the purportedly low- and high-uncertainty conditions earned more money, responded more quickly and had a higher learning rate from monetary rewards relative to baseline. Participants in the purportedly high-uncertainty conditions showed enhanced reward learning, and a model-free computational analysis revealed a higher learning rate from monetary rewards compared to the purportedly low-uncertainty and baseline conditions. Our results indicate that the placebo response is able to enhance reward learning in healthy individuals, opening up exciting avenues for future research in placebo effects on other cognitive functions.