Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
2.
Bioorg Chem ; 147: 107425, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714117

RESUMO

Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Desenho de Fármacos , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Inibidores de Proteínas Quinases , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Células Hep G2 , Estrutura Molecular , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química
3.
Biomedicines ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672280

RESUMO

BACKGROUND: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.

4.
Biol Trace Elem Res ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216793

RESUMO

3-chloro-1,2-propanediol (3-MCPD) is a member of the group of pollutants known as chloropropanols and is considered a genotoxic carcinogen. Due to the occurrence of 3-MCPD, which cannot be avoided in multiplexed food processes, it is necessary to explore novel agents to reduce or prevent the toxicity of 3-MCPD. Many recent studies on boron compounds reveal their superior biological roles such as antioxidant, anticancer, and antigenotoxic properties. In the current investigation, we have evaluated in vitro cytotoxic, oxidative, and genotoxic damage potential of 3-MCPD on human whole blood cultures and the alleviating effect of boric acid (BA) and borax (BX) for 72 h. In our in vitro experiments, we have treated blood cells with BA and BX (2.5, 5, and 10 mg/L) and 3-MCPD (at IC50 of 11.12 mg/l) for 72 h to determine the cytotoxic damage potential by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) release assays. Oxidative damage was assessed using total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. Genotoxicity evaluations were performed using chromosome aberrations (CAs) and 8-hydroxy deoxyguanosine (8-OHdG) assays. The result of our experiments showed that the 3-MCPD compound induced cytotoxicity, oxidative stress, and genotoxicity in a clear concentration-dependent manner. BA and BX reduced cytotoxicity, oxidative stress, and genotoxicity induced by 3-MCPD. In conclusion, BA and BX are safe and non-genotoxic under the in vitro conditions and can alleviate cytotoxic, oxidative, and genetic damage induced by 3-MCPD in the human blood cells. Our findings suggest that dietary boron supplements may offer a novel strategy for mitigating hematotoxicity induced by xenobiotics, including 3-MCPD.

5.
Anticancer Agents Med Chem ; 24(1): 39-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957910

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. METHODS: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. RESULTS: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. CONCLUSION: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.


Assuntos
Antineoplásicos , Glioblastoma , Neuroblastoma , Animais , Humanos , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proliferação de Células
6.
Mar Environ Res ; 193: 106294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096712

RESUMO

Contamination of the aquatic environment with different insecticides is a major concern in the aquatic ecosystem today. For this reason, in the designed study, Thiamethoxam (TMX) for which there is limited information on its negative effects on Oncorhynchus mykiss was investigated, its effects on hematotoxicity, oxidative status, cytotoxicity, DNA damage and apoptotic status indicators in blood/liver tissue. However, the antitoxic potential of ulexite (UX) supplementation in the elimination of TMX-mediated toxicity has been determined. LC50-96h value determined for TMX 0.73 mg/L has been determined. As a result of hematology profile, TMX application, RBC, Hgb and Hct values showed a temporal decrease compared to the control group, while increases were determined in MCV, MCH and MCHC values. It was determined that the inhibition/induction of hematological parameters was slowed down by adding UX to the medium. During the trial (48th and 96th hours), it was noted that TMX induced cortisol level, while UX supplementation slowed this induction at 48th hour. Antioxidant enzyme activities were significantly inhibited by TMX application, and MDA and MPO values increased as a result of the stimulation of ROS. It was determined that UX added to the medium showed activity in favor of antioxidants and tried to inhibit MDA and MPO levels. When Nrf-2, one of the inflammation parameters, was compared with the administration and control groups, it was determined that it inhibited depending on time, TNF-α, IL-6, DNA damage and apoptosis were induced, and UX suppressed this situation. The results obtained were evaluated as statistically meaningful. Briefly, it was determined that TMX induced oxidative damage in all tissues at 48th - 96th hours, whereas UX mitigated this situation. The results provide possible in vivo evidence that UX supplements can reduce TMX-mediated oxidative stress and tissues damage in O. mykiss blood and liver tissues.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Inseticidas , Humanos , Tiametoxam/toxicidade , Ecossistema , Estresse Oxidativo , Antioxidantes , Inseticidas/toxicidade
7.
J Enzyme Inhib Med Chem ; 39(1): 2286925, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062550

RESUMO

Cancer and antibiotic-resistant bacterial infections are significant global health challenges. The resistance developed in cancer treatments intensifies therapeutic difficulties. In addressing these challenges, this study synthesised a series of N,N'-dialkyl urea derivatives containing methoxy substituents on phenethylamines. Using isocyanate for the efficient synthesis yielded target products 14-18 in 73-76% returns. Subsequently, their antibacterial and anticancer potentials were assessed. Cytotoxicity tests on cancer cell lines, bacterial strains, and a healthy fibroblast line revealed promising outcomes. All derivatives demonstrated robust antibacterial activity, with MIC values ranging from 0.97 to 15.82 µM. Notably, compounds 14 and 16 were particularly effective against the HeLa cell line, while compounds 14, 15, and 17 showed significant activity against the SH-SY5Y cell line. Importantly, these compounds had reduced toxicity to healthy fibroblast cells than to cancer cells, suggesting their potential as dual-functioning agents targeting both cancer and bacterial infections.


Assuntos
Antineoplásicos , Infecções Bacterianas , Neuroblastoma , Humanos , Células HeLa , Ureia/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
8.
RSC Med Chem ; 14(11): 2315-2326, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020070

RESUMO

In this study, combining the thiazole and cinnamoyl groups into the styryl-thiazole scaffold, a series of novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease (AD). Hybrids 6e and 6i are the most promising among the synthesized hybrids since they are able to significantly increase cell viabilities in Aß1-42-exposed-human neuroblastoma cell line (6i at the concentration of 50 µg mL-1 and 6e at the concentration of 25 µg mL-1 resulted in ∼34% and ∼30% increase in cell viabilities, respectively). Compounds 6e and 6i exhibit highly AChE inhibitory properties in the experimental AD model at 375.6 ± 18.425 mU mL-1 and 397.6 ± 32.152 mU mL-1, respectively. Moreover, these data were also confirmed by docking studies and in vitro enzyme inhibition assays. Compared to hybrid 6e and according to the results, 6i also has the highest potential against Aß1-42 aggregation with over 80% preventive activity. The in silico prediction of the physicochemical properties confirms that 6i possesses a better profile compared to 6e. Therefore, compound 6i presents a promising multi-targeted active molecular profile for treating AD considering the multifactorial nature of AD, and it is reasonable to deepen its mechanisms of action in an in vivo experimental model of AD.

9.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930015

RESUMO

MOTIVATION: Many approaches in systems biology have been applied in drug repositioning due to the increased availability of the omics data and computational biology tools. Using a multi-omics integrated network, which contains information of various biological interactions, could offer a more comprehensive inspective and interpretation for the drug mechanism of action (MoA). RESULTS: We developed a computational pipeline for dissecting the hidden MoAs of drugs (Open MoA). Our pipeline computes confidence scores to edges that represent connections between genes/proteins in the integrated network. The interactions showing the highest confidence score could indicate potential drug targets and infer the underlying molecular MoAs. Open MoA was also validated by testing some well-established targets. Additionally, we applied Open MoA to reveal the MoA of a repositioned drug (JNK-IN-5A) that modulates the PKLR expression in HepG2 cells and found STAT1 is the key transcription factor. Overall, Open MoA represents a first-generation tool that could be utilized for predicting the potential MoA of repurposed drugs and dissecting de novo targets for developing effective treatments. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/XinmengLiao/Open_MoA.


Assuntos
Biologia Computacional , Software , Reposicionamento de Medicamentos
10.
Nat Commun ; 14(1): 5417, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669926

RESUMO

Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines.


Assuntos
Neoplasias , Humanos , Linhagem Celular , Desenvolvimento de Medicamentos , Perfilação da Expressão Gênica , Expressão Gênica
11.
iScience ; 26(10): 107727, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674987

RESUMO

Activated de novo lipogenesis (DNL) is the critical pathway involved in the progression of metabolic-associated fatty liver disease (MAFLD). We present an in vitro steatosis model for MAFLD that induces steatosis through activated DNL. This model utilizes insulin and LXR receptor ligand T0901317, eliminating the need for fatty acid treatment. Significant increases in triglycerides (TAGs) and expression of DNL-related transcription factors were observed. Transcriptomic analysis revealed distinct gene expression profiles between the DNL and conventional oleic acid (OA)-induced steatosis model. DNL steatosis model exhibited elevated pathways related to glycolysis, cholesterol homeostasis, and bile acid metabolism, reflecting its clinical relevance to MAFLD. Moreover, C75 and JNK-IN-5A compounds effectively reduced TAG accumulation and steatosis-related protein expression in the DNL model, whereas they had no significant impact on TAG accumulation in the OA model. In conclusion, we introduce an ideal model for steatosis study, which could help in understanding the MAFLD mechanisms.

12.
Free Radic Biol Med ; 205: 77-89, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37271226

RESUMO

NAD+ and glutathione precursors are currently used as metabolic modulators for improving the metabolic conditions associated with various human diseases, including non-alcoholic fatty liver disease, neurodegenerative diseases, mitochondrial myopathy, and age-induced diabetes. Here, we performed a one-day double blinded, placebo-controlled human clinical study to assess the safety and acute effects of six different Combined Metabolic Activators (CMAs) with 1 g of different NAD+ precursors based on global metabolomics analysis. Our integrative analysis showed that the NAD+ salvage pathway is the main source for boosting the NAD+ levels with the administration of CMAs without NAD+ precursors. We observed that incorporation of nicotinamide (Nam) in the CMAs can boost the NAD+ products, followed by niacin (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), but not flush free niacin (FFN). In addition, the NA administration led to a flushing reaction, accompanied by decreased phospholipids and increased bilirubin and bilirubin derivatives, which could be potentially risky. In conclusion, this study provided a plasma metabolomic landscape of different CMA formulations, and proposed that CMAs with Nam, NMN as well as NR can be administered for boosting NAD+ levels to improve altered metabolic conditions.


Assuntos
Doenças Metabólicas , Doenças Neurodegenerativas , Niacina , Humanos , NAD/metabolismo , Niacinamida , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia
14.
Free Radic Biol Med ; 204: 347-358, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245532

RESUMO

Growing evidence suggests that the depletion of plasma NAD+ and glutathione (GSH) may play an important role in the development of metabolic disorders. The administration of Combined Metabolic Activators (CMA), consisting of GSH and NAD+ precursors, has been explored as a promising therapeutic strategy to target multiple altered pathways associated with the pathogenesis of the diseases. Although studies have examined the therapeutic effect of CMA that contains N-acetyl-l-cysteine (NAC) as a metabolic activator, a system-wide comparison of the metabolic response to the administration of CMA with NAC and cysteine remains lacking. In this placebo-controlled study, we studied the acute effect of the CMA administration with different metabolic activators, including NAC or cysteine with/without nicotinamide or flush free niacin, and performed longitudinal untargeted-metabolomics profiling of plasma obtained from 70 well-characterized healthy volunteers. The time-series metabolomics data revealed the metabolic pathways affected after the administration of CMAs showed high similarity between CMA containing nicotinamide and NAC or cysteine as metabolic activators. Our analysis also showed that CMA with cysteine is well-tolerated and safe in healthy individuals throughout the study. Last, our study systematically provided insights into a complex and dynamics landscape involved in amino acid, lipid and nicotinamide metabolism, reflecting the metabolic responses to CMA administration containing different metabolic activators.


Assuntos
Acetilcisteína , Cisteína , Humanos , Acetilcisteína/metabolismo , NAD , Glutationa/metabolismo , Metabolômica , Niacinamida
15.
J Transl Med ; 21(1): 332, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210557

RESUMO

BACKGROUND: Despite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies. METHODS: Here, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved. RESULTS: We identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool. CONCLUSIONS: This study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Reposicionamento de Medicamentos/métodos , Glutaminase/genética , Glutaminase/metabolismo , Glutaminase/uso terapêutico , Transcriptoma , Glutamatos/genética , Glutamatos/uso terapêutico
16.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048065

RESUMO

Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 µg/mL and 50 µg/mL of costunolide, and 50 µg/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.


Assuntos
Doença de Parkinson , Sesquiterpenos , Humanos , Doença de Parkinson/tratamento farmacológico , Dopamina/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Acetilcolinesterase , Simulação de Acoplamento Molecular , Sesquiterpenos/farmacologia , Monoaminoxidase/metabolismo , Apoptose
17.
Biomed Pharmacother ; 161: 114486, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906970

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the LUAD patients. METHODS: Survival analysis was used to identify the prognostic genes. Gene co-expression network analysis was used to identify the hub genes driving the tumor development. A profile-based drug repositioning approach was used to repurpose the potentially useful drugs for targeting the hub genes. MTT and LDH assay were used to measure the cell viability and drug cytotoxicity, respectively. Western blot was used to detect the expression of the proteins. FINDINGS: We identified 341 consistent prognostic genes from two independent LUAD cohorts, whose high expression was associated with poor survival outcomes of patients. Among them, eight genes were identified as hub genes due to their high centrality in the key functional modules in the gene-co-expression network analysis and these genes were associated with the various hallmarks of cancer (e.g., DNA replication and cell cycle). We performed drug repositioning analysis for three of the eight genes (CDCA8, MCM6, and TTK) based on our drug repositioning approach. Finally, we repurposed five drugs for inhibiting the protein expression level of each target gene and validated the drug efficacy by performing in vitro experiments. INTERPRETATION: We found the consensus targetable genes for the treatment of LUAD patients with different races and geographic characteristics. We also proved the feasibility of our drug repositioning approach for the development of new drugs for disease treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Reposicionamento de Medicamentos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Perfilação da Expressão Gênica , Análise de Sobrevida
18.
Nutrients ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36771285

RESUMO

Liver pyruvate kinase (PKL) has recently emerged as a new target for non-alcoholic fatty liver disease (NAFLD), and inhibitors of this enzyme could represent a new therapeutic option. However, this breakthrough is complicated by selectivity issues since pyruvate kinase exists in four different isoforms. In this work, we report that ellagic acid (EA) and its derivatives, present in numerous fruits and vegetables, can inhibit PKL potently and selectively. Several polyphenolic analogues of EA were synthesized and tested to identify the chemical features responsible for the desired activity. Molecular modelling studies suggested that this inhibition is related to the stabilization of the PKL inactive state. This unique inhibition mechanism could potentially herald the development of new therapeutics for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piruvato Quinase/metabolismo , Ácido Elágico/química , Fígado/metabolismo
19.
J Sci Food Agric ; 103(9): 4340-4350, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36782090

RESUMO

BACKGROUND: In this study, the effects of biofilm coatings obtained by immobilization of different borates - namely borax (BX), colemanite (COL), and ulexite (UX) - with chitosan (Ch) on the shelf life of rainbow trout fillets were investigated. The immobilization and characterization of borates in Ch were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential analysis. In determining the shelf life of fillets that were covered by immersion and stored for 15 days, microbiological (total aerobic mesophilic, psychrotrophic, lactic acid, Pseudomonas, and Enterobacteriaceae bacteria counts) and chemical analyses (total volatile basic nitrogen, thiobarbituric acid reactive substance, and pH levels) were performed at 3 day periodic intervals. In addition, the biodegradation of borates was determined using inductively coupled plasma mass spectrometry in biofilm-coated fillets on the 1st, 8th, and 15th storage days. RESULTS: The microbial results of the coatings enriched with borates (BX, COL, and UX) at different levels (0, 0.03, and 0.06 mg L-1 ) (due to the immobilization with Ch) show the shelf life was extended by 3-6 days in all of the treatment groups compared with the control. CONCLUSION: It was concluded that BX, COL, and UX coatings enriched by immobilization with Ch increase shelf life and improve fillet quality. In addition, the enrichment of BX, COL, and UX with Ch showed explicit natural protective effects. This study demonstrates that Ch-enriched coatings of BX, COL, and UX can be used as natural bioactive nanocarriers to provide bioactive food ingredients in the seafood processing industry. © 2023 Society of Chemical Industry.


Assuntos
Quitosana , Conservação de Alimentos , Animais , Conservação de Alimentos/métodos , Quitosana/química , Boratos , Cromatografia Gasosa-Espectrometria de Massas , Armazenamento de Alimentos/métodos
20.
Drug Chem Toxicol ; : 1-13, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606327

RESUMO

Nowadays, the unique features of nanoparticles (NPs) have encouraged new applications in different areas including biology, medicine, agriculture, and electronics. Their quick joining into daily life not only enhances the uses of NPs in a wide range of modern technologies but also their release into the aquatic environment causes inevitable environmental concerns. On the other hand boron exhibits key physiological effects on biological systems. This research was designed for evaluating the toxicity of magnetite nanoparticles (Fe3O4-MNPs) on aquatic organisms and obtaining data for the information gap in this area. In this study, Rainbow trout (Oncorhynchus mykiss) was considered as an aquatic indicator, and trials were designed as Ulexite (a boron mineral, UX) treatment against exposure to Fe3O4-MNPs. Synthesized and characterized Fe3O4-MNPs were exposed to rainbow trouts in wide spectrum concentrations (0.005-0.08 mL/L) to analyze its lethal dose (LC50) and cytoprotective properties by UX treatment were assessed against Fe3O4-MNPs applications for 96 h. For the initial toxicity analysis, hematological parameters (blood cell counts) were examined in experimental groups and micronucleus (MN) assay was performed to monitor nuclear abnormalities after exposure to NPs. Biochemical analyzes in both blood and liver samples were utilized to assess antioxidant/oxidative stress and inflammatory parameters. Also, 8-hydroxy-2'-deoxyguanosine (8-OHdG) assay was used to investigate oxidative DNA lesions and Caspase-3 analysis was performed on both blood and liver tissues to monitor apoptotic cell death occurrence. When antioxidant enzymes in blood and liver tissue were examined, time-dependent decreases in activity were determined in SOD, CAT, GPx, and GSH enzymes, while increased levels of MDA and MPO parameters were observed in respect to Fe3O4-MNPs exposure. It was found that TNF-α, Il-6 levels were enhanced against Fe3O4-MNPs treatment, but Nrf-2 levels were decreased at the 46th and 96th h. In the 96th application results, all parameters were statistically significant (p < 0.05) in blood and liver tissue, except for the IL-6 results. It was determined that the frequency of MN, the level of 8-OHdG and caspase-3 activity increased in respect to Fe3O4-MNPs exposure over time. Treatment with UX alleviated Fe3O4-MNPs-induced hematotoxic and hepatotoxic alterations as well as oxidative and genetic damages. Our findings offer strong evidence for the use of UX as promising, safe and natural protective agents against environmental toxicity of magnetite nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA