Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 244, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424235

RESUMO

The formation of hematopoietic cells relies on the chromatin remodeling activities of ISWI ATPase SMARCA5 (SNF2H) and its complexes. The Smarca5 null and conditional alleles have been used to study its functions in embryonic and organ development in mice. These mouse model phenotypes vary from embryonic lethality of constitutive knockout to less severe phenotypes observed in tissue-specific Smarca5 deletions, e.g., in the hematopoietic system. Here we show that, in a gene dosage-dependent manner, the hypomorphic allele of SMARCA5 (S5tg) can rescue not only the developmental arrest in hematopoiesis in the hCD2iCre model but also the lethal phenotypes associated with constitutive Smarca5 deletion or Vav1iCre-driven conditional knockout in hematopoietic progenitor cells. Interestingly, the latter model also provided evidence for the role of SMARCA5 expression level in hematopoietic stem cells, as the Vav1iCre S5tg animals accumulate stem and progenitor cells. Furthermore, their hematopoietic stem cells exhibited impaired lymphoid lineage entry and differentiation. This observation contrasts with the myeloid lineage which is developing without significant disturbances. Our findings indicate that animals with low expression of SMARCA5 exhibit normal embryonic development with altered lymphoid entry within the hematopoietic stem cell compartment.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Diferenciação Celular/genética , Adenosina Trifosfatases/metabolismo
2.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269430

RESUMO

Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.


Assuntos
Cromatina , Neoplasias , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA
3.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197313

RESUMO

ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones. Indeed, we observed that CRISPR/cas9-mediated SMARCA5 knockout in AML cell lines (S5KO) inhibited the cell cycle progression. We also observed that the SMARCA5 deletion induced karyorrhexis and nuclear budding as well as increased the ploidy, indicating its role in mitotic division of AML cells. The cytogenetic analysis of S5KO cells revealed the premature chromatid separation. We conclude that deleting SMARCA5 in AML blocks leukemic proliferation and chromatid cohesion.


Assuntos
Adenosina Trifosfatases/deficiência , Proliferação de Células , Cromátides , Proteínas Cromossômicas não Histona/deficiência , Técnicas de Inativação de Genes , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Humanos , Células K562 , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo
4.
J Immunol ; 202(12): 3434-3446, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068388

RESUMO

Development of lymphoid progenitors requires a coordinated regulation of gene expression, DNA replication, and gene rearrangement. Chromatin-remodeling activities directed by SWI/SNF2 superfamily complexes play important roles in these processes. In this study, we used a conditional knockout mouse model to investigate the role of Smarca5, a member of the ISWI subfamily of such complexes, in early lymphocyte development. Smarca5 deficiency results in a developmental block at the DN3 stage of αß thymocytes and pro-B stage of early B cells at which the rearrangement of Ag receptor loci occurs. It also disturbs the development of committed (CD73+) γδ thymocytes. The αß thymocyte block is accompanied by massive apoptotic depletion of ß-selected double-negative DN3 cells and premitotic arrest of CD4/CD8 double-positive cells. Although Smarca5-deficient αß T cell precursors that survived apoptosis were able to undergo a successful TCRß rearrangement, they exhibited a highly abnormal mRNA profile, including the persistent expression of CD44 and CD25 markers characteristic of immature cells. We also observed that the p53 pathway became activated in these cells and that a deficiency of p53 partially rescued the defect in thymus cellularity (in contrast to early B cells) of Smarca5-deficient mice. However, the activation of p53 was not primarily responsible for the thymocyte developmental defects observed in the Smarca5 mutants. Our results indicate that Smarca5 plays a key role in the development of thymocytes undergoing ß-selection, γδ thymocytes, and also B cell progenitors by regulating the transcription of early differentiation programs.


Assuntos
Adenosina Trifosfatases/metabolismo , Linfócitos B/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Células Progenitoras Linfoides/fisiologia , Linfócitos T/fisiologia , Timócitos/fisiologia , Adenosina Trifosfatases/genética , Animais , Diferenciação Celular , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Seleção Clonal Mediada por Antígeno , Rearranjo Gênico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA