Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Virus Evol ; 7(1): veab005, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33623709

RESUMO

Revealing the determinants of virome composition is central to placing disease emergence in a broader evolutionary context. Fish are the most species-rich group of vertebrates and so provide an ideal model system to study the factors that shape virome compositions and their evolution. We characterized the viromes of nineteen wild-caught species of marine fish using total RNA sequencing (meta-transcriptomics) combined with analyses of sequence and protein structural homology to identify divergent viruses that often evade characterization. From this, we identified twenty-five new vertebrate-associated viruses and a further twenty-two viruses likely associated with fish diet or their microbiomes. The vertebrate-associated viruses identified here included the first fish virus in the Matonaviridae (single-strand, negative-sense RNA virus). Other viruses fell within the Astroviridae, Picornaviridae, Arenaviridae, Reoviridae, Hepadnaviridae, Paramyxoviridae, Rhabdoviridae, Hantaviridae, Filoviridae, and Flaviviridae, and were sometimes phylogenetically distinct from known fish viruses. We also show how key metrics of virome composition-viral richness, abundance, and diversity-can be analysed along with host ecological and biological factors as a means to understand virus ecology. Accordingly, these data suggest that that the vertebrate-associated viromes of the fish sampled here are predominantly shaped by the phylogenetic history (i.e. taxonomic order) of their hosts, along with several biological factors including water temperature, habitat depth, community diversity and swimming behaviour. No such correlations were found for viruses associated with porifera, molluscs, arthropods, fungi, and algae, that are unlikely to replicate in fish hosts. Overall, these data indicate that fish harbour particularly large and complex viromes and the vast majority of fish viromes are undescribed.

3.
Viruses ; 12(11)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158212

RESUMO

Tilapia lake virus (TiLV) has caused mass mortalities in farmed and wild tilapia with serious economic and ecological consequences. Until recently, this virus was the sole member of the Amnoonviridae, a family within the order Articulavirales comprising segmented negative-sense RNA viruses. We sought to identify additional viruses within the Amnoonviridae through total RNA sequencing (meta-transcriptomics) and data mining of published transcriptomes. Accordingly, we sampled marine fish species from both Australia and China and discovered several segments of two new viruses within the Amnoonviridae, tentatively called Flavolineata virus and Piscibus virus, respectively. In addition, by mining vertebrate transcriptome data, we identified nine additional virus transcripts matching to multiple genomic segments of TiLV in both marine and freshwater fish. These new viruses retained sequence conservation with the distantly related Orthomyxoviridae in the RdRp subunit PB1, but formed a distinct and diverse phylogenetic group. These data suggest that the Amnoonviridae have a broad host range within fish and that greater animal sampling will identify additional divergent members of the Articulavirales.


Assuntos
Doenças dos Peixes/virologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/classificação , Tilápia/virologia , Transcriptoma , Animais , Austrália , China , Biologia Computacional , Mineração de Dados , Especificidade de Hospedeiro , Orthomyxoviridae/isolamento & purificação , Filogenia , Análise de Sequência de RNA
4.
Viruses ; 12(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962015

RESUMO

Influenza viruses (family Orthomyxoviridae) infect a variety of vertebrates, including birds, humans, and other mammals. Recent metatranscriptomic studies have uncovered divergent influenza viruses in amphibians, fish and jawless vertebrates, suggesting that these viruses may be widely distributed. We sought to identify additional vertebrate influenza-like viruses through the analysis of publicly available RNA sequencing data. Accordingly, by data mining, we identified the complete coding segments of five divergent vertebrate influenza-like viruses. Three fell as sister lineages to influenza B virus: salamander influenza-like virus in Mexican walking fish (Ambystoma mexicanum) and plateau tiger salamander (Ambystoma velasci), Siamese algae-eater influenza-like virus in Siamese algae-eater fish (Gyrinocheilus aymonieri) and chum salmon influenza-like virus in chum salmon (Oncorhynchus keta). Similarly, we identified two influenza-like viruses of amphibians that fell as sister lineages to influenza D virus: cane toad influenza-like virus and the ornate chorus frog influenza-like virus, in the cane toad (Rhinella marina) and ornate chorus frog (Microhyla fissipes), respectively. Despite their divergent phylogenetic positions, these viruses retained segment conservation and splicing consistent with transcriptional regulation in influenza B and influenza D viruses, and were detected in respiratory tissues. These data suggest that influenza viruses have been associated with vertebrates for their entire evolutionary history.


Assuntos
Anfíbios/virologia , Evolução Molecular , Peixes/virologia , Orthomyxoviridae/genética , Animais , Humanos , Vírus da Influenza B/genética , Influenza Humana/virologia , Orthomyxoviridae/classificação , Infecções por Orthomyxoviridae/virologia , Filogenia , Transcriptoma , Vertebrados/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA