Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Atherosclerosis ; 382: 117266, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725860

RESUMO

BACKGROUND AND AIMS: LCAT esterifies cholesterol in both HDL (α-activity) and apoB-containing lipoproteins (ß-activity). The main activator of LCAT ß-activity is apoE, which in humans exists in 3 main different isoforms (E2, E3 and E4). Here, to gather insights into the potential role of LCAT in apoB-containing lipoprotein metabolism, we investigated the ability of apoE isoforms to promote LCAT-mediated cholesterol esterification. METHODS: We evaluated the plasma cholesterol esterification rate (CER) in 311 individuals who express functional LCAT and either apoE2, apoE3, or apoE4 and in 28 individuals who also carried LCAT mutations causing selective loss of LCAT α-activity (Fish-Eye Disease (FED)-causing mutations). The association of carrier status with CER was determined using an adjusted linear regression model. The kinetic of LCAT activity towards reconstituted HDLs (rHDLs) containing each apoE isoform was determined using the Michaelis-Menten model. RESULTS: Plasma CER was ∼20% higher in apoE2 carriers compared to apoE3 carriers, and ∼30% higher in apoE2 carriers compared to apoE4 carriers. After adjusting for age, sex, total cholesterol, HDL-C, apoA-I, apoB, chronic kidney disease diagnosis, zygosity, and LCAT concentration, CER remained significantly different among carriers of the three apoE isoforms. The same trend was observed in carriers of FED-causing mutations. rHDLs containing apoE2 were associated with a lower affinity but higher maximal esterification rate, compared to particles containing apoE3 or apoE4. CONCLUSION: The present results suggest that the apoE2 isoform is associated with a higher LCAT-mediated cholesterol esterification. This observation may contribute to the characterization of the peculiar functional properties of apoE2.

3.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627492

RESUMO

Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and the accumulation of lipoprotein X (LpX). Renal failure is the major cause of morbidity and mortality in FLD patients; the pathogenesis of renal disease is only partly understood, but abnormalities in the lipoprotein profile could play a role in disease onset and progression. Serum and lipoprotein fractions from LCAT deficient carriers and controls were tested for renal toxicity on podocytes and tubular cells, and the underlying mechanisms were investigated at the cellular level. Both LpX and HDL from LCAT-deficient carriers triggered oxidative stress in renal cells, which culminated in cell apoptosis. These effects are partly explained by lipoprotein enrichment in unesterified cholesterol and ceramides, especially in the HDL fraction. Thus, alterations in lipoprotein composition could explain some of the nephrotoxic effects of LCAT deficient lipoproteins on podocytes and tubular cells.

4.
Alzheimers Res Ther ; 15(1): 95, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210544

RESUMO

OBJECTIVE: The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients. METHODS: The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF. RESULTS: AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preß-HDL particles was significantly reduced. In agreement with the reduced preß-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aß1-42 CSF content. CONCLUSION: Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aß1-42).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Esterificação , Lipoproteínas de Alta Densidade Pré-beta , Colesterol , Biomarcadores
5.
Artigo em Inglês | MEDLINE | ID: mdl-36521735

RESUMO

Individuals with loss-of-function mutations in the ANGPTL3 gene express a rare lipid phenotype called Familial Combined Hypolipidemia (FHBL2). FHBL2 individuals show reduced plasma concentrations of total cholesterol and triglycerides as well as of lipoprotein particles, including HDL. This feature is particularly remarkable in homozygotes in whom ANGPTL3 in blood is completely absent. ANGPTL3 acts as a circulating inhibitor of LPL and EL and it is thought that EL hyperactivity is the cause of plasma HDL reduction in FHBL2. Nevertheless, the consequences of ANGTPL3 deficiency on HDL functionality have been poorly explored. In this report, HDL isolated from homozygous and heterozygous FHBL2 individuals were evaluated for their ability to preserve endothelial homeostasis as compared to control HDL. It was found that only the complete absence of ANGPTL3 alters HDL subclass distribution, as homozygous, but not heterozygous, carriers have reduced content of large and increased content of small HDL with no alterations in HDL2 and HDL3 size. The plasma content of preß-HDL was reduced in carriers and showed a positive correlation with plasma ANGPTL3 levels. Changes in composition did not however alter the functionality of FHBL2 HDL, as particles isolated from carriers retained their capacity to promote NO production and to inhibit VCAM-1 expression in endothelial cells. Furthermore, no significant changes in circulating levels of soluble ICAM-1 and E-selectin were detected in carriers. These results indicate that changes in HDL composition associated with the partial or complete absence of ANGPTL3 did not alter some of the potentially anti-atherogenic functions of these lipoproteins.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Hipobetalipoproteinemias , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Células Endoteliais , Hipobetalipoproteinemias/genética
6.
Front Immunol ; 13: 935241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172376

RESUMO

Background: The etiopathogenesis of abdominal aortic aneurysm (AAA) is still unclarified, but vascular inflammation and matrix metalloproteases activation have a recognized role in AAA development and progression. Circulating lipoproteins are involved in tissue inflammation and repair, particularly through the regulation of intracellular cholesterol, whose excess is associated to cell damage and proinflammatory activation. We analyzed lipoprotein metabolism and function in AAA and in control vasculopathic patients, to highlight possible non-atherosclerosis-related, specific abnormalities. Methods: We measured fluorometrically serum esterified/total cholesterol ratio, as an index of lecithin-cholesterol acyltransferase (LCAT) activity, and cholesteryl ester transfer protein (CETP) activity in patients referred to vascular surgery either for AAA (n=30) or stenotic aortic/peripheral atherosclerosis (n=21) having similar burden of cardiovascular risk factors and disease. We measured high-density lipoprotein (HDL)-cholesterol efflux capacity (CEC), through the ATP-binding cassette G1 (ABCG1) and A1 (ABCA1) pathways and serum cell cholesterol loading capacity (CLC), by radioisotopic and fluorimetric methods, respectively. Results: We found higher LCAT (+23%; p < 0.0001) and CETP (+49%; p < 0.0001) activity in AAA sera. HDL ABCG1-CEC was lower (-16%; p < 0.001) and ABCA1-CEC was higher (+31.7%; p < 0.0001) in AAA. Stratification suggests that smoking may partly contribute to these modifications. CEC and CETP activity correlated with CLC only in AAA. Conclusions: We demonstrated that compared to patients with stenotic atherosclerosis, patients with AAA had altered HDL metabolism and functions involved in their anti-inflammatory and tissue repair activity, particularly through the ABCG1-related intracellular signaling. Clarifying the relevance of this mechanism for AAA evolution might help in developing new diagnostic parameters and therapeutic targets for the early management of this condition.


Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Trifosfato de Adenosina , Anti-Inflamatórios , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol , HDL-Colesterol , Homeostase , Humanos , Inflamação/metabolismo , Lecitinas , Lipoproteínas/metabolismo , Metaloproteases/metabolismo , Esterol O-Aciltransferase/metabolismo
7.
Front Pediatr ; 10: 969081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989999

RESUMO

Background: Lipoprotein X (LpX) - mediated extremely severe hyperlipidemia is a possible feature detectable in children with syndromic paucity of intralobular bile ducts (Alagille syndrome) but rarely in other types of intra- and/or extrahepatic infantile cholestasis. Case presentation: Here we report on a previously well 18-month child admitted for cholestatic jaundice and moderate hepatomegaly. Laboratory tests at entry showed conjugated hyperbilirubinemia, elevated values of serum aminotransferases, gamma-glutamyl transpeptidase (GGT) and bile acids (100 folds upper normal values). Extremely severe and ever-increasing hypercholesterolemia (total cholesterol up to 1,730 mg/dl) prompted an extensive search for causes of high GGT and/or hyperlipidemic cholestasis, including an extensive genetic liver panel (negative) and a liver biopsy showing a picture of obstructive cholangitis, biliary fibrosis, and bile duct proliferation with normal MDR3 protein expression. Results of a lipid study showed elevated values of unesterified cholesterol, phospholipids, and borderline/low apolipoprotein B, and low high-density lipoprotein-cholesterol. Chromatographic analysis of plasma lipoproteins fractions isolated by analytical ultracentrifugation revealed the presence of the anomalous lipoprotein (LpX). Magnetic resonance cholangiopancreatography and percutaneous transhepatic cholangiography showed stenosis of the confluence of the bile ducts with dilation of the intrahepatic biliary tract and failure to visualize the extrahepatic biliary tract. Surgery revealed focal fibroinflammatory stenosis of the left and right bile ducts confluence, treated with resection and bilioenteric anastomosis, followed by the rapid disappearance of LpX, paralleling the normalization of serum lipids, bilirubin, and bile acids, with a progressive reduction of hepatobiliary enzymes. Conclusion: We have described a unique case of focal non-neoplastic extrahepatic biliary stenosis of uncertain etiology, presenting with unusual extremely high levels of LpX-mediated hypercholesterolemia, a condition which is frequently mistaken for LDL on routine clinical tests.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35151900

RESUMO

High-density lipoproteins (HDL) play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDL, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Doenças Neurodegenerativas/metabolismo
9.
J Intern Med ; 291(3): 364-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761839

RESUMO

BACKGROUND: Kidney failure is the major cause of morbidity and mortality in familial lecithin:cholesterol acyltransferase deficiency (FLD), a rare inherited lipid disorder with no cure. Lipoprotein X (LpX), an abnormal lipoprotein, is primarily accountable for nephrotoxicity. METHODS: CER-001 was tested in an FLD patient with dramatic kidney disease for 12 weeks. RESULTS: Infusions of CER-001 normalized the lipoprotein profile, with a disappearance of the abnormal LpX in favour of normal-sized LDL. The worsening of kidney function was slowed by the treatment, and kidney biopsy showed a slight reduction of lipid deposits and a stabilization of the disease. In vitro experiments demonstrate that CER-001 progressively reverts lipid accumulation in podocytes by a dual effect: remodelling plasma lipoproteins and removing LpX-induced lipid deposit. CONCLUSION: This study demonstrates that CER-001 may represent a therapeutic option in FLD patients. It also has the potential to be beneficial in other renal diseases characterized by kidney lipid deposits.


Assuntos
Deficiência da Lecitina Colesterol Aciltransferase , Apolipoproteína A-I/uso terapêutico , Humanos , Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferase/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/uso terapêutico , Fosfolipídeos , Proteínas Recombinantes
10.
J Lipid Res ; 62: 100065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33713671

RESUMO

Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated. The data collected and analyzed from bears were also compared with those from healthy humans. In bears, the cholesterol ester, unesterified cholesterol, TG, and phospholipid contents of VLDL and LDL were higher in winter than in summer. The percentage lipid composition of LDL differed between bears and humans but did not change seasonally in bears. Bear LDL was larger, richer in TGs, showed prebeta electrophoretic mobility, and had 5-10 times lower binding to arterial PGs than human LDL. Finally, plasma CEC was higher in bears than in humans, especially the HDL fraction when mediated by ABCA1. These results suggest that in brown bears the absence of early atherogenesis is likely associated with a lower affinity of LDL for arterial PGs and an elevated CEC of bear plasma.


Assuntos
Hibernação , Lipoproteínas , Ursidae , Animais , Colesterol/sangue , Lipoproteínas/sangue , Estações do Ano , Ursidae/fisiologia
11.
Biomedicines ; 8(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352841

RESUMO

Background. Non-alcoholic fatty liver disease (NAFLD) increases the risk of atherosclerosis but this risk may differ between metabolically- vs. genetically-driven NAFLD. High-density lipoprotein (HDL)-mediated cholesterol efflux (CEC) and plasma loading capacity (CLC) are key factors in atherogenesis. Aims. To test whether CEC and CLC differ between metabolically- vs. genetically-determined NAFLD. Methods: CEC and CLC were measured in 19 patients with metabolic NAFLD and wild-type PNPLA3 genotype (Group M), 10 patients with genetic NAFLD carrying M148M PNPLA3 genotype (Group G), and 10 controls PNPLA3 wild-types and without NAFLD. CEC and CLC were measured ex vivo by isotopic and fluorimetric techniques using cellular models. Results: Compared with Group G, Group M showed reduced total CEC (-18.6%; p < 0.001) as well as that mediated by cholesterol transporters (-25.3% ABCA1; -16.3% ABCG1; -14.8% aqueous diffusion; all p < 0.04). No difference in CEC was found between Group G and controls. The presence of metabolic syndrome further impaired ABCG1-mediated CEC in Group M. Group M had higher plasma-induced CLC than Group G and controls (p < 0.001). Conclusions: Metabolically-, but not genetically-, driven NAFLD associates with dysfunctional HDL-meditated CEC and abnormal CLC. These data suggest that the mechanisms of anti-atherogenic protection in metabolic NAFLD are impaired.

12.
J Pharmacol Exp Ther ; 375(3): 463-468, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980814

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) is a unique plasma enzyme able to esterify cholesterol, and it plays an important role in HDL maturation and promotion of reverse cholesterol transport. Familial LCAT deficiency (FLD; OMIM number 245900) is a rare recessive disease that results from loss-of-function mutations in the LCAT gene and has no cure. In this study, we assessed the in vitro efficacy of a novel small-molecule LCAT activator. Cholesterol esterification rate (CER) and LCAT activity were tested in plasma from six controls and five FLD homozygous carriers of various LCAT mutations at different doses of the compound (0.1, 1, and 10 µg/ml). In control plasma, the compound significantly increased both CER (P < 0.001) and LCAT activity (P = 0.007) in a dose-dependent manner. Both CER and LCAT activity increased by 4- to 5-fold, reaching maximum activation at the dose of 1 µg/ml. Interestingly, Daiichi Sankyo compound produced an increase in CER in two of the five tested LCAT mutants (Leu372--Arg and Val309--Met), while LCAT activity increased in three LCAT mutants (Arg147--Trp, Thr274--Ile and Leu372--Arg); mutant Pro254--Ser was not activated at any of the tested doses. The present findings form the basis for personalized therapeutic interventions in FLD carriers and support the potential LCAT activation in secondary LCAT defects. SIGNIFICANCE STATEMENT: We characterized the pharmacology of a novel small-molecule LCAT activator in vitro on a subset of naturally occurring LCAT mutants. Our findings form the basis for personalized therapeutic interventions for familial LCAT deficiency carriers, who can face severe complications and for whom no cure exists.


Assuntos
Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Adulto , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Bibliotecas de Moléculas Pequenas/farmacologia
13.
PLoS One ; 15(3): e0229322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176696

RESUMO

Tetradecylthioacetic acid (TTA) is a synthetic fatty acid with a sulfur substitution in the ß-position. This modification renders TTA unable to undergo complete ß-oxidation and increases its biological activity, including activation of peroxisome proliferator activated receptors (PPARs) with preference for PPARα. This study investigated the effects of TTA on lipid and lipoprotein metabolism in the intestine and liver of mice fed a high fat diet (HFD). Mice receiving HFD supplemented with 0.75% (w/w) TTA had significantly lower body weights compared to mice fed the diet without TTA. Plasma triacylglycerol (TAG) was reduced 3-fold with TTA treatment, concurrent with increase in liver TAG. Total cholesterol was unchanged in plasma and liver. However, TTA promoted a shift in the plasma lipoprotein fractions with an increase in larger HDL particles. Histological analysis of the small intestine revealed a reduced size of lipid droplets in enterocytes of TTA treated mice, accompanied by increased mRNA expression of fatty acid transporter genes. Expression of the cholesterol efflux pump Abca1 was induced in the small intestine, but not in the liver. Scd1 displayed markedly increased mRNA and protein expression in the intestine of the TTA group. It is concluded that TTA treatment of HFD fed mice leads to increased expression of genes involved in uptake and transport of fatty acids and HDL cholesterol in the small intestine with concomitant changes in the plasma profile of smaller lipoproteins.


Assuntos
HDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Lipoproteínas/metabolismo , PPAR alfa/agonistas , Sulfetos/administração & dosagem , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Sulfetos/farmacologia , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA