Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(34): 6821-6830, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35968649

RESUMO

Hydroboration of isocyanates with HBPin was demonstrated using both catalytic and catalyst-free approaches. In arene solvents, the reactions employed the commercially available and bench-stable Co(acac)2/dpephos (dpephos = bis[(2-diphenylphosphino)phenyl] ether) pre-catalyst and proved chemodivergent, showing the formation of either formamides or N-methylamines, depending on the concentration of HBPin and the reaction conditions used. Catalytic monohydroboration of isocyanates to formamides was found to be highly chemoselective, tolerating alkenes, alkynes, aryl halides, esters, carboxamides, nitriles, nitroarenes and heteroaromatic functionalities. The catalyst-free hydroboration reactions have been demonstrated in neat HBPin. Whereas monohydroboration proved less selective compared with Co(acac)2/dpephos-catalyzed transformations, selective deoxygenative hydroboration of isocyanates to N-methylamines was observed under catalyst-free conditions.


Assuntos
Cobalto , Isocianatos , Catálise , Formamidas , Metilaminas , Estrutura Molecular
2.
Nat Commun ; 8: 14839, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337985

RESUMO

Terminal cobalt(IV)-oxo (CoIV-O) species have been implicated as key intermediates in various cobalt-mediated oxidation reactions. Herein we report the photocatalytic generation of a mononuclear non-haem [(13-TMC)CoIV(O)]2+ (2) by irradiating [CoII(13-TMC)(CF3SO3)]+ (1) in the presence of [RuII(bpy)3]2+, Na2S2O8, and water as an oxygen source. The intermediate 2 was also obtained by reacting 1 with an artificial oxidant (that is, iodosylbenzene) and characterized by various spectroscopic techniques. In particular, the resonance Raman spectrum of 2 reveals a diatomic Co-O vibration band at 770 cm-1, which provides the conclusive evidence for the presence of a terminal Co-O bond. In reactivity studies, 2 was shown to be a competent oxidant in an intermetal oxygen atom transfer, C-H bond activation and olefin epoxidation reactions. The present results lend strong credence to the intermediacy of CoIV-O species in cobalt-catalysed oxidation of organic substrates as well as in the catalytic oxidation of water that evolves molecular oxygen.

3.
J Am Chem Soc ; 139(2): 976-984, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27973774

RESUMO

A new transition-metal-free borylation of aryl and vinyl halides using 1,1-bis[(pinacolato)boryl]alkanes as boron sources is described. In this transformation one of the boron groups from 1,1-bis[(pinacolato)boryl]alkanes is selectively transferred to aryl and vinyl halides in the presence of sodium tert-butoxide as the only activator to form organoboronate esters. Under the developed borylation conditions, a broad range of organohalides are borylated with excellent chemoselectivity and functional group compatibility, thus offering a rare example of a transition-metal-free borylation protocol. Experimental and theoretical studies have been performed to elucidate the reaction mechanism, revealing the unusual formation of Lewis acid/base adduct between organohalides and α-borylcarbanion, generated in situ from the reaction of 1,1-bis[(pinacolato)boryl]alkanes with an alkoxide base, to facilitate the borylation reactions.

5.
J Am Chem Soc ; 137(50): 15680-3, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26652625

RESUMO

A structurally well-defined mesoporous Hf-based metal-organic framework (Hf-NU-1000) is employed as a well-defined scaffold for a highly electrophilic single-site d(0) Zr-benzyl catalytic center. This new material Hf-NU-1000-ZrBn is fully characterized by a variety of spectroscopic techniques and DFT computation. Hf-NU-1000-ZrBn is found to be a promising single-component catalyst (i.e., not requiring a catalyst/activator) for ethylene and stereoregular 1-hexene polymerization.

6.
J Chem Theory Comput ; 11(3): 1102-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26579760

RESUMO

We assess the performance of real-time time-dependent density functional theory (RT-TDDFT) for the calculation of absorption spectra of 12 organic dye molecules relevant to photovoltaics and dye-sensitized solar cells with 8 exchange-correlation functionals (3 traditional, 3 global hybrids, and 2 range-separated hybrids). We compare the calculations with traditional linear-response (LR) TDDFT and experimental spectra. In addition, we demonstrate the efficacy of the RT-TDDFT approach to calculate wide absorption spectra of two large chromophores relevant to photovoltaics and molecular switches. RT-TDDFT generally requires longer simulation times, compared to LR-TDDFT, for absorption spectra of small systems. However, it becomes more effective for the calculation of wide absorption spectra of large molecular complexes and systems with very high densities of states.

7.
J Am Chem Soc ; 137(42): 13624-31, 2015 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-26434603

RESUMO

Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant. The product, a protected 1,2-aminoalcohol, is formed selectively and with high efficiency using this recyclable heterogeneous catalyst. Significantly, the unusual regioselective transformation occurs only when an Fe-decorated Hf6 node and the Fe-porphyrin strut work in concert. This report is an example of concurrent orthogonal tandem catalysis.

8.
J Am Chem Soc ; 137(25): 8237-43, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26051709

RESUMO

The layer-by-layer growth of a surface-attached metal-organic framework (SURMOF), [Cu2(F4bdc)2(dabco)] (F4bdc = tetrafluorobenzene-1,4-dicarboxylate and dabco = 1,4-diazabicyclo-[2.2.2]octane), on carboxylate- and pyridine-terminated surfaces has been investigated by various surface characterization techniques. Particular attention was paid to the dependency of the crystal orientation and morphology on surface functionality, deposition temperature, and first layer order. For the fully oriented deposition of SURMOFs, not only a suitable surface chemistry but also the appropriate temperature has to be chosen. In the case of carboxylate-terminated surfaces, the expected [100] oriented [Cu2(F4bdc)2(dabco)] SURMOF can be achieved at low temperatures (5 °C). In contrast, the predicted [001] oriented SURMOF on pyridine-terminated surface was obtained only at high deposition temperatures (60 °C). Interestingly, we found that rearrangement processes in the very first layer determine the final orientation (distribution) of the growing crystals. These effects could be explained by a surprisingly hampered substitution at the apical position of the Cu2-paddle wheel units, which requires significant thermal activation, as supported by quantum-chemical calculations.

9.
J Am Chem Soc ; 136(45): 15861-4, 2014 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-25357020

RESUMO

Porous heterogeneous catalysts play a pivotal role in the chemical industry. Herein a new Hf-based metal-organic framework (Hf-NU-1000) incorporating Hf6 clusters is reported. It demonstrates high catalytic efficiency for the activation of epoxides, facilitating the quantitative chemical fixation of CO2 into five-membered cyclic carbonates under ambient conditions, rendering this material an excellent catalyst. As a multifunctional catalyst, Hf-NU-1000 is also efficient for other epoxide activations, leading to the regioselective and enantioretentive formation of 1,2-bifuctionalized systems via solvolytic nucleophilic ring opening.

10.
Chem Asian J ; 9(11): 3163-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205601

RESUMO

The reaction of biphenylene (1) with Et2SiH2 in the presence of [Ni(PPhMe2)4] results in the formation of a mixture of 2-diethylhydrosilylbiphenyl [2(Et2HSi)] and 9,9,-diethyl-9-silafluorene (3). Silafluorene 3 was isolated in 37.5% and 2(Et2HSi) in 36.9% yield. The underlying reaction mechanism was elucidated by DFT calculations. 4-Methyl-9,9-diethyl-9-silafluorene (7) was obtained selectively from the [Ni(PPhMe2)4]-catalyzed reaction of Et2SiH2 and 1-methylbiphenylene. By contrast, no selectivity could be found in the Ni-catalyzed reaction between Et2SiH2 and the biphenylene derivative that bears tBu substituents in the 2- and 7-positions. Therefore, two pairs of isomers of tBu-substituted silafluorenes and of the related diethylhydrosilylbiphenyls were formed in this reaction. However, a subsequent dehydrogenation of the diethylhydrosilylbiphenyls with Wilkinson's catalyst yielded a mixture of 2,7-di-tert-butyl-9,9-diethyl-9-silafluorene (8) and 3,6-di-tert-butyl-9,9-diethyl-9-silafluorene (9). Silafluorenes 8 and 9 were separated by column chromatography.

11.
J Phys Chem Lett ; 5(21): 3716-23, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278741

RESUMO

Metal-organic frameworks (MOFs) constructed from Zr6-based nodes have recently received considerable attention given their exceptional thermal, chemical, and mechanical stability. Because of this, the structural diversity of Zr6-based MOFs has expanded considerably and in turn given rise to difficulty in their precise characterization. In particular it has been difficult to assign where protons (needed for charge balance) reside on some Zr6-based nodes. Elucidating the precise proton topologies in Zr6-based MOFs will have wide ranging implications in defining their chemical reactivity, acid/base characteristics, conductivity, and chemical catalysis. Here we have used a combined quantum mechanical and experimental approach to elucidate the precise proton topology of the Zr6-based framework NU-1000. Our data indicate that a mixed node topology, [Zr6(µ3-O)4(µ3-OH)4(OH)4 (OH2)4](8+), is preferred and simultaneously rule out five alternative node topologies.

12.
Chemistry ; 18(27): 8482-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22674842

RESUMO

The reaction of nido-[1,2-(Cp*RuH)(2)B(3)H(7)] (1a, Cp*=η(5)-C(5)Me(5)) with [Mo(CO)(3)(CH(3)CN)(3)] under mild conditions yields the new metallaborane arachno-[(Cp*RuCO)(2)B(2)H(6)] (2). Compound 2 catalyzes the cyclotrimerization of a variety of internal- and terminal alkynes to yield mixtures of 1,3,5- and 1,2,4-substituted benzenes. The reactivities of nido-1a and arachno-2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne-insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2. The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne-insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum-chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.

13.
Nat Chem ; 3(7): 532-7, 2011 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-21697873

RESUMO

Bioinspired hydrogenation of N(2) to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H(2) remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N(2) splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H(2) at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.


Assuntos
Amônia/química , Hidrogênio/química , Nitrogênio/química , Compostos Organometálicos/síntese química , Rutênio/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Teoria Quântica , Termodinâmica
14.
J Phys Chem A ; 113(7): 1199-209, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19159202

RESUMO

The silylium ion [C(6)(SiMe(2))(SiHMe(2))(5)](+) offers an amazing example of multiple Si...H interactions. It exhibits a symmetric Si(alpha)-H-Si(alpha) motif supported by two additional Si(beta)-H...Si(alpha) agostic interactions. This cation is highly fluctional in NMR spectra at room temperature due to shift of the hydride bridge. The DFT calculations show that the hydride shift is related to internal rotation of silyl groups. We performed NMR, static DFT, and dynamics studies of this process and found two possible mechanisms, associated with internal rotation of either beta- or gamma-silyls. The energy barrier is largely caused by the silyl internal rotation, whereas the hydride transfer itself is intrinsically quite easy. The gamma-silyl rotation is somewhat more favorable than the beta-silyl rotation. Vibrational dynamics of the cation is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA