Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(8)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455991

RESUMO

Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.


Assuntos
COVID-19 , Diabetes Mellitus , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , SARS-CoV-2
2.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684818

RESUMO

The use of monoamine oxidases (MAOs) in amine oxidation is a great example of how biocatalysis can be applied in the agricultural or pharmaceutical industry and manufacturing of fine chemicals to make a shift from traditional chemical synthesis towards more sustainable green chemistry. This article reports the screening of fourteen Antarctic fungi strains for MAO activity and the discovery of a novel psychrozyme MAOP3 isolated from the Pseudogymnoascus sp. P3. The activity of the native enzyme was 1350 ± 10.5 U/L towards a primary (n-butylamine) amine, and 1470 ± 10.6 U/L towards a secondary (6,6-dimethyl-3-azabicyclohexane) amine. MAO P3 has the potential for applications in biotransformations due to its wide substrate specificity (aliphatic and cyclic amines, pyrrolidine derivatives). The psychrozyme operates at an optimal temperature of 30 °C, retains 75% of activity at 20 °C, and is rather thermolabile, which is beneficial for a reduction in the overall costs of a bioprocess and offers a convenient way of heat inactivation. The reported biocatalyst is the first psychrophilic MAO; its unique biochemical properties, substrate specificity, and effectiveness predispose MAO P3 for use in environmentally friendly, low-emission biotransformations.


Assuntos
Aminas/metabolismo , Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Monoaminoxidase/metabolismo , Aminas/química , Ascomicetos/classificação , Ascomicetos/genética , Biocatálise , Temperatura Baixa , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Química Verde/métodos , Cinética , Modelos Moleculares , Monoaminoxidase/química , Monoaminoxidase/isolamento & purificação , Inibidores da Monoaminoxidase/farmacologia , Oxirredução , Conformação Proteica , Especificidade por Substrato
3.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502503

RESUMO

Cold-adapted enzymes are useful tools in the organic syntheses conducted in mixed aqueous-organic or non-aqueous solvents due to their molecular flexibility that stabilizes the proteins in low water activity environments. A novel psychrophilic laccase gene from Kabatiella bupleuri, G3 IBMiP, was spliced by Overlap-Extension PCR (OE-PCR) and expressed in Pichia pastoris. Purified recombinant KbLcc1 laccase has an optimal temperature of 30 °C and pH of 3.5, 5.5, 6.0, and 7.0 in the reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, sinapic acid, and syringaldazine, respectively. Moreover, laccase KbLcc1 is highly thermolabile, as it loses 40% of activity after 30 min at 40 °C and is inactivated at 50 °C after the same period of incubation. The new enzyme remained active with 1 mM of Ni2+, Cu2+, Mn2+, and Zn2+ and with 2 mM of Co2+, Ca2+, and Mg2+, but Fe2+ greatly inhibited the laccase activity. Moreover, 1% ethanol had no impact on KbLcc1, although acetone and ethyl acetate decreased the laccase activity. The presence of hexane (40%, v/v) caused a 58% increase in activity. Laccase KbLcc1 could be applied in the decolorization of synthetic dyes and in the biotransformation of ferulic acid to vanillin. After 5 days of reaction at 20 °C, pH 3.5, with 1 mM ABTS as a mediator, the vanillin concentration was 21.9 mg/L and the molar yield of transformation reached 14.39%.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/metabolismo , Lacase/metabolismo , Benzaldeídos/metabolismo , Biotransformação/genética , Clonagem Molecular/métodos , Temperatura Baixa , Cor , Expressão Gênica/genética , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Biomolecules ; 11(6)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199365

RESUMO

Psychrophilic laccases catalyzing the bond formation in mild, environmentally friendly conditions are one of the biocatalysts at the focus of green chemistry. Screening of 41 cold-adapted strains of yeast and yeast-like fungi revealed a new laccase-producing strain, which was identified as Kabatiella bupleuri G3 IBMiP according to the morphological characteristics and analysis of sequences of the D1/D2 regions of 26S rDNA domain and the ITS1-5,8S-ITS2 region. The extracellular activity of laccase in reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at the optimal pH 3.5 was 215 U/L after 15 days of growth in a medium with waste material and 126 U/L after 25 days of cultivation in a defined medium. Copper (II) ions (0.4 mM), Tween 80 (1.0 mM) and ascorbic acid (5.0 mM) increased the production of laccase. The optimum temperature for enzyme operation is in the range of 30-40 °C and retains over 60% of the maximum activity at 10 °C. New laccase shows high thermolability-half-life at 40 °C was only 60 min. Enzyme degradation of synthetic dyes was the highest for crystal violet, i.e., 48.6% after 1-h reaction with ABTS as a mediator. Outcomes of this study present the K. bupleuri laccase as a potential psychrozyme for environmental and industrial applications.


Assuntos
Ascomicetos/enzimologia , Corantes/química , Proteínas Fúngicas , Violeta Genciana/química , Lacase , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Temperatura Alta , Lacase/química , Lacase/isolamento & purificação
5.
Eur J Med Chem ; 208: 112814, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980562

RESUMO

A 'foldamerization' strategy for the discovery of biologically active peptide is evaluated using as an example the peptides that inhibit the p53-MDM2/X interactions. Application of a peptide scan with two constrained ß-residue of trans and cis stereochemistry indicated a substitution pattern that leads to active molecules with enhanced conformational stability and high resistance to proteolysis. This procedure led to the discovery of a peptide that showed subnanomolar inhibition of the p53-MDM2 interaction (Ki = 0.4 nM) with resistance to proteolysis enhanced by ca. two orders of magnitude. Crystallographic analysis and molecular modelling allowed for understanding of these peptide-protein interactions at the molecular level.


Assuntos
Cicloleucina/química , Oligopeptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação , Oligopeptídeos/química , Oligopeptídeos/genética , Conformação Proteica
6.
Biomolecules ; 10(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053888

RESUMO

More than 80% of Earth's surface is exposed periodically or continuously to temperatures below 5 °C. Organisms that can live in these areas are called psychrophilic or psychrotolerant. They have evolved many adaptations that allow them to survive low temperatures. One of the most interesting modifications is production of specific substances that prevent living organisms from freezing. Psychrophiles can synthesize special peptides and proteins that modulate the growth of ice crystals and are generally called ice binding proteins (IBPs). Among them, antifreeze proteins (AFPs) inhibit the formation of large ice grains inside the cells that may damage cellular organelles or cause cell death. AFPs, with their unique properties of thermal hysteresis (TH) and ice recrystallization inhibition (IRI), have become one of the promising tools in industrial applications like cryobiology, food storage, and others. Attention of the industry was also caught by another group of IBPs exhibiting a different activity-ice-nucleating proteins (INPs). This review summarizes the current state of art and possible utilizations of the large group of IBPs.


Assuntos
Proteínas Anticongelantes/química , Proteínas da Membrana Bacteriana Externa/química , Agricultura/métodos , Animais , Proteínas Anticongelantes/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Criopreservação/métodos , Manipulação de Alimentos/métodos , Ciência dos Materiais/métodos
7.
ChemMedChem ; 15(4): 370-375, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31774938

RESUMO

Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki =0.095 µm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI.


Assuntos
Aldeídos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Aldeídos/síntese química , Aldeídos/química , Aminação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 182: 111588, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31421630

RESUMO

Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface. Several small molecule inhibitors have been reported to inhibit the formation of the p53-MDM2 complex with the vast majority mimicking the p53 residues Phe19, Trp23 and Leu26. Recently, we have described the transit from the 3-point to 4-point pharmacophore model stabilizing this intrinsically disordered N-terminus by increasing the binding affinity by a factor of 3. Therefore, we performed a thorough SAR analysis, including chiral separation of key compound which was evaluated by FP and 2D NMR. Finally, p53-specific anti-cancer activity towards p53-wild-type cancer cells was observed for several representative compounds.


Assuntos
Antineoplásicos/farmacologia , Proteínas Intrinsicamente Desordenadas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzilaminas/síntese química , Benzilaminas/química , Benzilaminas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cianetos/síntese química , Cianetos/química , Cianetos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Formiatos/síntese química , Formiatos/química , Formiatos/farmacologia , Humanos , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Estrutura Molecular , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
9.
FEBS J ; 286(7): 1360-1374, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30715803

RESUMO

The p53 protein is engaged in the repair of DNA mutations and elimination of heavily damaged cells, providing anticancer protection. Dysregulation of p53 activity is a crucial step in carcinogenesis. This dysregulation is often caused by the overexpression of negative regulators of p53, among which MDM2 is the most prominent one. Antagonizing MDM2 with small molecules restores the activity of p53 in p53 wild-type (p53wt ) cells and thus provides positive outcomes in the treatment of p53wt cancers. Previously, we have reported the discovery of a panel of fluoro-substituted indole-based antagonists of MDM2. Here, we demonstrate the biological activity and stereoselectivity of the most active compound from this series. Both enantiomers of the esterified form of the compound, as well as its corresponding carboxylic acids, were found active in fluorescence polarization (FP) assay, nuclear magnetic resonance (NMR) and microscale thermophoresis (MST) assay, with Ki and KD values around 1 µm. From these four compounds, the esterified enantiomer (R)-5a was active in cells, which was evidenced by the increase of p53 levels, the induced expression of p53-target genes (CDKN1A and MDM2), the selective induction of cell cycle arrest, and selective growth inhibition of p53wt U-2 OS and SJSA-1 compared to p53del SAOS-2 cells. The analysis of the crystal structure of human MDM2 in complex with the compound (R)-6a (carboxylic acid of the active (R)-5a compound) revealed the classical three-finger binding mode. Altogether, our data demonstrate the activity of the compound and provide the structural basis for further structure optimization.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Halogenação , Humanos , Indóis/química , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
10.
Bioorg Chem ; 82: 284-289, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396062

RESUMO

The cell-surface protein CD44, a primary receptor for hyaluronic acid (HA), is one of the most promising targets for cancer therapies. It is prominently involved in the process of tumor growth and metastasis. The possibility of modulating the CD44-HA interaction with a pharmacological inhibitor is therefore of great importance, yet until now there are only few small molecules reported to bind to CD44. Here, we describe the results of the NMR fragment-based screening conducted against CD44 by which we found eight new hit compounds that bind to the receptor with the affinity in milimolar range. The NMR-based characterization revealed that there are two possible binding modes for these compounds, and for some of them the binding is no longer possible in the presence of hyaluronic acid. This could provide an interesting starting point for the development of new high-affinity ligands targeting the CD44-HA axis.


Assuntos
Compostos de Anilina/metabolismo , Receptores de Hialuronatos/metabolismo , Tiazóis/metabolismo , Compostos de Anilina/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Receptores de Hialuronatos/química , Ácido Hialurônico/química , Ligantes , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Tiazóis/química
11.
Acta Crystallogr D Struct Biol ; 74(Pt 7): 695-701, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29968679

RESUMO

Recent research has identified a potential role of the hyaluronic acid receptor stabilin-2 (Stab2) in cancer metastasis. Stab2 belongs to a group of scavenger receptors and is responsible for the clearance of more than ten ligands, including hyaluronic acid (HA). In vivo experiments on mice have shown that the absence of Stab2, or its blocking by an antibody, effectively opposes cancer metastasis, which is accompanied by an increase in the level of circulating HA. Knowledge of ligand recognition and signal transduction by Stab2 is limited and no three-dimensional structures of any protein fragments of this receptor have been solved to date. Here, a high-resolution X-ray structure of the seventh FAS1 domain of Stab2 is reported. This structure provides the first insight into the Stab2 structure.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Receptor fas/química , Animais , Cristalografia por Raios X , Ácido Hialurônico , Camundongos , Conformação Proteica , Domínios Proteicos , Transdução de Sinais
12.
ACS Med Chem Lett ; 8(10): 1025-1030, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29057045

RESUMO

Based on a combination of an Ugi four component reaction and a ring closing metathesis, a library of novel artificial macrocyclic inhibitors of the p53-MDM2 interaction was designed and synthesized. These macrocycles, alternatively to stapled peptides, target for the first time the large hydrophobic surface area formed by Tyr67, Gln72, His73, Val93, and Lys94 yielding derivatives with affinity to MDM2 in the nanomolar range. Their binding affinity with MDM2 was evaluated using fluorescence polarization (FP) assay and 1H-15N two-dimensional HSQC nuclear magnetic resonance experiments.

13.
Angew Chem Int Ed Engl ; 56(36): 10725-10729, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28691783

RESUMO

The design and synthesis of head-to-tail linked artificial macrocycles using the Ugi-reaction has been developed. This synthetic approach of just two steps is unprecedented, short, efficient and works over a wide range of medium (8-11) and macrocyclic (≥12) loop sizes. The substrate scope and functional group tolerance is exceptional. Using this approach, we have synthesized 39 novel macrocycles by two or even one single synthetic operation. The properties of our macrocycles are discussed with respect to their potential to bind to biological targets that are not druggable by conventional, drug-like compounds. As an application of these artificial macrocycles we highlight potent p53-MDM2 antagonism.


Assuntos
Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular
14.
J Med Chem ; 60(10): 4234-4244, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28482147

RESUMO

The tumor suppressor protein p53, the "guardian of the genome", is inactivated in nearly all cancer types by mutations in the TP53 gene or by overexpression of its negative regulators, oncoproteins MDM2/MDMX. Recovery of p53 function by disrupting the p53-MDM2/MDMX interaction using small-molecule antagonists could provide an efficient nongenotoxic anticancer therapy. Here we present the syntheses, activities, and crystal structures of the p53-MDM2/MDMX inhibitors based on the 1,4,5-trisubstituted imidazole scaffold which are appended with aliphatic linkers that enable coupling to bioactive carriers. The compounds have favorable properties at both biochemical and cellular levels. The most effective compound 19 is a tight binder of MDM2 and activates p53 in cancer cells that express the wild-type p53, leading to cell cycle arrest and growth inhibition. Crystal structures reveal that compound 19 induces MDM2 dimerization via the aliphatic linker. This unique dimerization-binding mode opens new prospects for the optimization of the p53-MDM2/MDMX inhibitors and conjugation with bioactive carriers.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
15.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331093

RESUMO

Coronaviruses are responsible for upper and lower respiratory tract infections in humans. It is estimated that 1 to 10% of the population suffers annually from cold-like symptoms related to infection with human coronavirus NL63 (HCoV-NL63), an alphacoronavirus. The nucleocapsid (N) protein, the major structural component of the capsid, facilitates RNA packing, links the capsid to the envelope, and is also involved in multiple other processes, including viral replication and evasion of the immune system. Although the role of N protein in viral replication is relatively well described, no structural data are currently available regarding the N proteins of alphacoronaviruses. Moreover, our understanding of the mechanisms of RNA binding and nucleocapsid formation remains incomplete. In this study, we solved the crystal structures of the N- and C-terminal domains (NTD, residues 10 to 140, and CTD, residues 221 to 340, respectively) of the N protein of HCoV-NL63, both at a 1.5-Å resolution. Based on our structure of NTD solved here, we proposed and experimentally evaluated a model of RNA binding. The structure of the CTD reveals the mode of N protein dimerization. Overall, this study expands our understanding of the initial steps of N protein-nucleic acid interaction and may facilitate future efforts to control the associated infections.IMPORTANCE Coronaviruses are responsible for the common cold and other respiratory tract infections in humans. According to multiple studies, 1 to 10% of the population is infected each year with HCoV-NL63. Viruses are relatively simple organisms composed of a few proteins and the nucleic acids that carry the information determining their composition. The nucleocapsid (N) protein studied in this work protects the nucleic acid from the environmental factors during virus transmission. This study investigated the structural arrangement of N protein, explaining the first steps of its interaction with nucleic acid at the initial stages of virus structure assembly. The results expand our understanding of coronavirus physiology and may facilitate future efforts to control the associated infections.


Assuntos
Coronavirus Humano NL63/química , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Coronavirus Humano NL63/fisiologia , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Viral/metabolismo , Montagem de Vírus , Replicação Viral
16.
Eur J Med Chem ; 126: 384-407, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27907876

RESUMO

Using the computational pharmacophore-based ANCHOR.QUERY platform a new scaffold was discovered. Potent compounds evolved inhibiting the protein-protein interaction p53-MDM2. An extensive SAR study was performed based on our four-point pharmacophore model, yielding derivatives with affinity to MDM2 in the nanomolar range. Their binding affinity with MDM2 was evaluated using both fluorescence polarization (FP) assay and 2D-NMR-HSQC experiments.


Assuntos
Desenho de Fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Tetrazóis/síntese química , Tetrazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Técnicas de Química Sintética , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Proto-Oncogênicas c-mdm2/química , Relação Estrutura-Atividade , Tetrazóis/química , Proteína Supressora de Tumor p53/química
17.
ACS Chem Biol ; 11(12): 3310-3318, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27709883

RESUMO

The p53 pathway is inactivated in almost all types of cancer by mutations in the p53 encoding gene or overexpression of the p53 negative regulators, Mdm2 and/or Mdmx. Restoration of the p53 function by inhibition of the p53-Mdm2/Mdmx interaction opens up a prospect for a nongenotoxic anticancer therapy. Here, we present the syntheses, activities, and crystal structures of two novel classes of Mdm2-p53 inhibitors that are based on the 3-pyrrolin-2-one and 2-furanone scaffolds. The structures of the complexes formed by these inhibitors and Mdm2 reveal the dimeric protein molecular organization that has not been observed in the small-molecule/Mdm2 complexes described until now. In particular, the 6-chloroindole group does not occupy the usual Trp-23 pocket of Mdm2 but instead is engaged in dimerization. This entirely unique binding mode of the compounds opens new possibilities for optimization of the Mdm2-p53 interaction inhibitors.


Assuntos
4-Butirolactona/análogos & derivados , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirróis/química , Pirróis/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA