RESUMO
RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , RNA Longo não Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.
RESUMO
BACKGROUND: Positive correlations have been reported between wastewater SARS-CoV-2 concentrations and a community's burden of infection, disease or both. However, previous studies mostly compared wastewater to clinical case counts or nonrepresentative convenience samples, limiting their quantitative potential. OBJECTIVES: This study examined whether wastewater SARS-CoV-2 concentrations could provide better estimations for SARS-CoV-2 community prevalence than reported cases of COVID-19. In addition, this study tested whether wastewater-based epidemiology methods could identify neighborhood-level COVID-19 hotspots and SARS-CoV-2 variants. METHODS: Community SARS-CoV-2 prevalence was estimated from eight randomized door-to-door nasal swab sampling events in six Oregon communities of disparate size, location, and demography over a 10-month period. Simultaneously, wastewater SARS-CoV-2 concentrations were quantified at each community's wastewater treatment plant and from 22 Newport, Oregon, neighborhoods. SARS-CoV-2 RNA was sequenced from all positive wastewater and nasal swab samples. Clinically reported case counts were obtained from the Oregon Health Authority. RESULTS: Estimated community SARS-CoV-2 prevalence ranged from 8 to 1,687/10,000 persons. Community wastewater SARS-CoV-2 concentrations ranged from 2.9 to 5.1 log10 gene copies per liter. Wastewater SARS-CoV-2 concentrations were more highly correlated (Pearson's r=0.96; R2=0.91) with community prevalence than were clinically reported cases of COVID-19 (Pearson's r=0.85; R2=0.73). Monte Carlo simulations indicated that wastewater SARS-CoV-2 concentrations were significantly better than clinically reported cases at estimating prevalence (p<0.05). In addition, wastewater analyses determined neighborhood-level COVID-19 hot spots and identified SARS-CoV-2 variants (B.1 and B.1.399) at the neighborhood and city scales. DISCUSSION: The greater reliability of wastewater SARS-CoV-2 concentrations over clinically reported case counts was likely due to systematic biases that affect reported case counts, including variations in access to testing and underreporting of asymptomatic cases. With these advantages, combined with scalability and low costs, wastewater-based epidemiology can be a key component in public health surveillance of COVID-19 and other communicable infections. https://doi.org/10.1289/EHP10289.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oregon/epidemiologia , Prevalência , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas ResiduáriasRESUMO
Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.
Assuntos
Phytophthora , Animais , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Glycine max/genética , Virulência/genéticaRESUMO
Genomic surveillance has emerged as a critical monitoring tool during the SARS-CoV-2 pandemic. Wastewater surveillance has the potential to identify and track SARS-CoV-2 variants in the community, including emerging variants. We demonstrate the novel use of multilocus sequence typing to identify SARS-CoV-2 variants in wastewater. Using this technique, we observed the emergence of the B.1.351 (Beta) variant in Linn County, Oregon, USA, in wastewater 12 days before this variant was identified in individual clinical specimens. During the study period, we identified 42 B.1.351 clinical specimens that clustered into 3 phylogenetic clades. Eighteen of the 19 clinical specimens and all wastewater B.1.351 specimens from Linn County clustered into clade 1. Our results provide further evidence of the reliability of wastewater surveillance to report localized SARS-CoV-2 sequence information.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oregon/epidemiologia , Filogenia , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas ResiduáriasRESUMO
Extracellular vesicles (EVs) represent a prominent mechanism of transport and interaction between cells, especially microbes. Increasing evidence indicates that EVs play a key role in the physiological and pathological processes of pathogens and other symbionts. Recent research has focused on the specific functions of these vesicles during pathogen-host interactions, including trans-kingdom delivery of small RNAs, proteins and metabolites. Much current research on the function of EVs is focused on immunity and the interactions of microbes with human cells, while the roles of EVs during plant-microbe interactions have recently emerged in importance. In this review, we summarize recent research on the biogenesis of these vesicles and their functions in biology and pathology. Many key questions remain unclear, including the full structural and functional diversity of EVs, the roles of EVs in communication among microbes within microbiomes, how specific cargoes are targeted to EVs, whether EVs are targeted to specific destinations, and the full scope of EVs' transport of virulence effectors and of RNA and DNA molecules.
RESUMO
Shotgun metagenomic sequencing has transformed our understanding of microbial community ecology. However, preparing metagenomic libraries for high-throughput DNA sequencing remains a costly, labor-intensive, and time-consuming procedure, which in turn limits the utility of metagenomes. Several library preparation procedures have recently been developed to offset these costs, but it is unclear how these newer procedures compare to current standards in the field. In particular, it is not clear if all such procedures perform equally well across different types of microbial communities or if features of the biological samples being processed (e.g., DNA amount) impact the accuracy of the approach. To address these questions, we assessed how five different shotgun DNA sequence library preparation methods, including the commonly used Nextera Flex kit, perform when applied to metagenomic DNA. We measured each method's ability to produce metagenomic data that accurately represent the underlying taxonomic and genetic diversity of the community. We performed these analyses across a range of microbial community types (e.g., soil, coral associated, and mouse gut associated) and input DNA amounts. We find that the type of community and amount of input DNA influence each method's performance, indicating that careful consideration may be needed when selecting between methods, especially for low-complexity communities. However, the cost-effective preparation methods that we assessed are generally comparable to the current gold-standard Nextera DNA Flex kit for high-complexity communities. Overall, the results from this analysis will help expand and even facilitate access to metagenomic approaches in future studies. IMPORTANCE Metagenomic library preparation methods and sequencing technologies continue to advance rapidly, allowing researchers to characterize microbial communities in previously underexplored environmental samples and systems. However, widely accepted standardized library preparation methods can be cost-prohibitive. Newly available approaches may be less expensive, but their efficacy in comparison to standardized methods remains unknown. In this study, we compared five different metagenomic library preparation methods. We evaluated each method across a range of microbial communities varying in complexity and quantity of input DNA. Our findings demonstrate the importance of considering sample properties, including community type, composition, and DNA amount, when choosing the most appropriate metagenomic library preparation method.
RESUMO
Phytophthora sojae is an oomycete that causes stem and root rot disease in soybean. P. sojae delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. GmPUB1-1, and a homeologous copy GmPUB1-2, are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. In vitro ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the GmPUB1 genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by Rps1-b and Rps1-k. The recognition of Avr1k (which did not interact with GmPUB1-1) by Rps1-k plants was not, however, affected following GmPUB1-1 silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.
RESUMO
Phytophthora cinnamomi is a destructive pathogen causing root rot and dieback diseases on hundreds of economically and ecologically important plant species. Effective transformation systems enable modifications of candidate genes to understand the pathogenesis of P. cinnamomi. A previous study reported a polyethylene glycol and calcium dichloride (PEG/CaCl2)-mediated protoplast transformation method of P. cinnamomi. However, the virulence of the transformants was compromised. In this study, we selected ATCC 15400 as a suitable wild-type isolate for PEG/CaCl2 transformation using the green fluorescent protein after screening 11 P. cinnamomi isolates. Three transformants, namely, PcGFP-1, PcGFP-3, and PcGFP-5, consistently displayed a green fluorescence in their hyphae, chlamydospores, and sporangia. The randomly selected transformant PcGFP-1 was as virulent as the wild-type isolate in causing hypocotyl lesions on lupines. Fluorescent hyphae and haustoria were observed intracellularly and intercellularly in lupine tissues inoculated with PcGFP-1 zoospores. The potential application of this improved transformation system for functional genomics studies of P. cinnamomi is discussed.
RESUMO
Phytophthora pathogens are a persistent threat to the world's commercially important agricultural crops, including potato and soybean. Current strategies aim at reducing crop losses rely mostly on disease-resistance breeding and chemical pesticides, which can be frequently overcome by the rapid adaptive evolution of pathogens. Transgenic crops with intrinsic disease resistance offer a promising alternative and continue to be developed. Here, we explored Phytophthora-derived PI3P (phosphatidylinositol 3-phosphate) as a novel control target, using proteins that bind this lipid to direct secreted anti-microbial peptides and proteins (AMPs) to the surface of Phytophthora pathogens. In transgenic Nicotiana benthamiana, soybean, and potato plants, significantly enhanced resistance to different pathogen isolates was achieved by expression of two AMPs (GAFP1 or GAFP3 from the Chinese medicinal herb Gastrodia elata) fused with a PI3P-specific binding domain (FYVE). Using the soybean pathogen P. sojae as an example, we demonstrated that the FYVE domain could boost the activities of GAFPs in multiple independent assays, including those performed in vitro, in vivo, and in planta. Mutational analysis of P. sojae PI3K1 and PI3K2 genes of this pathogen confirmed that the enhanced activities of the targeted GAFPs were correlated with PI3P levels in the pathogen. Collectively, our study provides a new strategy that could be used to confer resistance not only to Phytophthora pathogens in many plants but also potentially to many other kinds of plant pathogens with unique targets.
Assuntos
Resistência à Doença , Glycine max/parasitologia , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Hifas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Glycine max/genética , Glycine max/crescimento & desenvolvimentoRESUMO
Transcriptional plasticity enables oomycetes to rapidly adapt to environmental challenges including emerging host resistance. For example, the soybean pathogen Phytophthora sojae can overcome resistance conferred by the host resistance gene Rps1b through natural silencing of its corresponding effector gene, Avr1b-1. With the Phytophthora CRISPR/Cas9 genome editing system, it is possible to generate site-specific knock-out (KO) and knock-in (KI) mutants and to investigate the biological functions of target genes. In this study, the Avr1b-1 gene was deleted from the P. sojae genome using a homology-directed recombination strategy that replaced Avr1b-1 with a gene encoding the fluorescent protein mCherry. As expected, all selected KO transformants gained virulence on Rps1b plants, while infection of plants lacking Rps1b was not compromised. When a sgRNA-resistant version of Avr1b-1 was reintroduced into the Avr1b-1 locus of an Avr1b KO transformant, KI transformants with a well-transcribed Avr1b-1 gene were unable to infect Rps1b-containing soybeans. However, loss of expression of the incoming Avr1b-1 gene was frequently observed in KI transformants, which resulted in these transformants readily infecting Rps1b soybeans. A similar variability in the expression levels of the incoming gene was observed with AVI- or mCherry-tagged Avr1b-1 constructs. Our results suggest that Avr1b-1 may be unusually susceptible to transcriptional variation.
RESUMO
Flumorph is a carboxylic acid amide (CAA) fungicide with high activity against oomycetes. However, evolution to CAAs from low resistance to high resistance has never been reported. This study investigated the basis of resistance evolution of flumorph in Phytophthora sojae. Total of 120 P. sojae isolates were collected and their sensitivity to flumorph was evaluated. Although no spontaneous resistance was found among the field isolates, adaptation on flumorph-amended media resulted in the selection of five stable mutant types exhibiting varying degrees of resistance to CAAs. Type I, which exhibited the lowest resistance level, was obtained when the wild-type isolate was exposed to a low concentration of flumorph, but no resistant mutants were obtained by direct exposure to higher concentrations. However, the more resistant types (Type II, III, IV and V) were obtained when Type I were exposed to higher concentrations of flumorph. Similar results were obtained when the entire screening process was repeated, which implied that evolution of resistance to flumorph in P. sojae could be a two-step process, where high resistance phenotypes could develop gradually from low resistance ones. Further investigation into molecular mechanism strongly confirmed that evolution of isolates highly resistant to flumorph occurs in a stepwise process with Type I as intermediary, through accumulation of mutations in their target protein of CAAs (CesA3). Together, our findings indicate that application of low rates of flumorph in field could result in selection of low resistance Type I isolates, but that raising dosage to maintain comparable levels of control could elicit rapid evolution of more resistant Type II, III, IV and V isolates with stepwise accumulation of mutations in CesA3, which would render flumorph ineffective as a control method. Precautionary resistance management strategy should be implemented. The phenomenon described in the study could have broader biological significance.
RESUMO
Oomycete pathogens such as Phytophthora secrete a repertoire of effectors into host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By coimmunoprecipitation (Co-IP), gel infiltration, and isothermal titration calorimetry (ITC) assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor. Altogether, this study highlights a virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This study unravels the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.
Assuntos
Complexos Multiproteicos/química , Phytophthora/química , Ubiquitina-Proteína Ligases/química , Complexos Multiproteicos/metabolismo , Phytophthora/metabolismo , Doenças das Plantas/microbiologia , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Celulase/metabolismo , Glycine max/microbiologia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Aspártico Endopeptidases/genética , Celulase/genética , Resistência à Doença/genética , Técnicas de Silenciamento de Genes , Glicosilação , Interações Hospedeiro-Patógeno/genética , Phytophthora/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Glycine max/enzimologia , Glycine max/genética , VirulênciaRESUMO
Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.
RESUMO
Fungal pathogens are seriously threatening food security and natural ecosystems; efficient and environmentally friendly control methods are essential to help safeguard such resources for increasing human populations on a global scale. Here, we find that Sclerotinia sclerotiorum, a widespread pathogen of dicotyledons, can grow endophytically in wheat, rice, barley, maize, and oat, providing protection against Fusarium head blight, stripe rust, and rice blast. Protection is also provided by disabled S. sclerotiorum strains harboring a hypovirulence virus. The disabled strain DT-8 promoted wheat yields by 4-18% in the field and consistently reduced Fusarium disease by 40-60% across multiple field trials. We term the host-dependent trophism of S. sclerotiorum, destructively pathogenic or mutualistically endophytic, as schizotrophism. As a biotroph, S. sclerotiorum modified the expression of wheat genes involved in disease resistance and photosynthesis and increased the level of IAA. Our study shows that a broad-spectrum pathogen of one group of plants may be employed as a biocontrol agent in a different group of plants where they can be utilized as beneficial microorganisms while avoiding the risk of in-field release of pathogens. Our study also raises provocative questions about the potential role of schizotrophic endophytes in natural ecosystems.
Assuntos
Grão Comestível , Micoses , Ascomicetos , Ecossistema , Humanos , Estilo de Vida , Doenças das PlantasRESUMO
The oomycete Phytophthora fragariae is a highly destructive pathogen of cultivated strawberry (Fragaria × ananassa), causing the root rotting disease, "red core". The host-pathogen interaction has a well described gene-for-gene resistance relationship, but to date neither candidate avirulence nor resistance genes have been identified. We sequenced a set of American, Canadian, and United Kingdom isolates of known race type, along with three representatives of the closely related pathogen of the raspberry (Rubus idaeus), P. rubi, and found a clear population structure, with a high degree of nucleotide divergence seen between some race types and abundant private variation associated with race types 4 and 5. In contrast, between isolates defined as United Kingdom races 1, 2, and 3 (UK1-2-3) there was no evidence of gene loss or gain; or the presence of insertions/deletions (INDELs) or Single Nucleotide Polymorphisms (SNPs) within or in proximity to putative pathogenicity genes could be found associated with race variation. Transcriptomic analysis of representative UK1-2-3 isolates revealed abundant expression variation in key effector family genes associated with pathogen race; however, further long read sequencing did not reveal any long range polymorphisms to be associated with avirulence to race UK2 or UK3 resistance, suggesting either control in trans or other stable forms of epigenetic modification modulating gene expression. This work reveals the combined power of population resequencing to uncover race structure in pathosystems and in planta transcriptomic analysis to identify candidate avirulence genes. This work has implications for the identification of putative avirulence genes in the absence of associated expression data and points toward the need for detailed molecular characterisation of mechanisms of effector regulation and silencing in oomycete plant pathogens.
RESUMO
Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens1-3. Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants4. The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS-INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2-BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Imunidade Vegetal/imunologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Arabidopsis/enzimologia , Endocitose , Ligantes , Moléculas com Motivos Associados a Patógenos/imunologia , Fosforilação , Proteínas Quinases/metabolismoRESUMO
Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.
Assuntos
Centrômero/genética , Oomicetos/genética , Phytophthora/genética , Alveolados/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Heterocromatina/genética , Histonas/genética , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Phytophthora/metabolismo , Rhizaria/genética , Estramenópilas/genéticaRESUMO
BACKGROUND: Long noncoding RNAs (lncRNAs) have roles in gene regulation, epigenetics, and molecular scaffolding and it is hypothesized that they underlie some mammalian evolutionary adaptations. However, for many mammalian species, the absence of a genome assembly precludes the comprehensive identification of lncRNAs. The genome of the American beaver (Castor canadensis) has recently been sequenced, setting the stage for the systematic identification of beaver lncRNAs and the characterization of their expression in various tissues. The objective of this study was to discover and profile polyadenylated lncRNAs in the beaver using high-throughput short-read sequencing of RNA from sixteen beaver tissues and to annotate the resulting lncRNAs based on their potential for orthology with known lncRNAs in other species. RESULTS: Using de novo transcriptome assembly, we found 9528 potential lncRNA contigs and 187 high-confidence lncRNA contigs. Of the high-confidence lncRNA contigs, 147 have no known orthologs (and thus are putative novel lncRNAs) and 40 have mammalian orthologs. The novel lncRNAs mapped to the Oregon State University (OSU) reference beaver genome with greater than 90% sequence identity. While the novel lncRNAs were on average shorter than their annotated counterparts, they were similar to the annotated lncRNAs in terms of the relationships between contig length and minimum free energy (MFE) and between coverage and contig length. We identified beaver orthologs of known lncRNAs such as XIST, MEG3, TINCR, and NIPBL-DT. We profiled the expression of the 187 high-confidence lncRNAs across 16 beaver tissues (whole blood, brain, lung, liver, heart, stomach, intestine, skeletal muscle, kidney, spleen, ovary, placenta, castor gland, tail, toe-webbing, and tongue) and identified both tissue-specific and ubiquitous lncRNAs. CONCLUSIONS: To our knowledge this is the first report of systematic identification of lncRNAs and their expression atlas in beaver. LncRNAs-both novel and those with known orthologs-are expressed in each of the beaver tissues that we analyzed. For some beaver lncRNAs with known orthologs, the tissue-specific expression patterns were phylogenetically conserved. The lncRNA sequence data files and raw sequence files are available via the web supplement and the NCBI Sequence Read Archive, respectively.