Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 108: 106954, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879962

RESUMO

In this work, we implement a dual frequency (24 kHz and 1174 kHz) ultrasonic assisted liquid phase exfoliation (ULPE) technique in deionized water (DIW) and other eco-friendly solvents, to produce a variety of high-quality few-layer graphene (FLG) solutions under controlled ultrasonication conditions. The resulting FLG dispersions of variable sizes (∼0.2-1.5 µm2) confirmed by characterisation techniques comprising UV-Vis spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM). For the first time we demonstrate that high yield of FLG flakes with minimal defects, stable for 6 + months in a solution (stability âˆ¼ 70 %), can be obtained in less than 1-hour of treatment in either water/ethanol (DIW:EtOH) or water/isopropyl alcohol (DIW:IPA) eco-friendly mixtures. We also scrutinized the underlying mechanisms of cavitation using high-speed imaging synchronized with acoustic pressure measurements. The addition of ethanol or IPA to deionized water is proposed to play a central role in exfoliation as it regulates the extend of the cavitation zone, the intensity of the ultrasonic field and, thus, the cavitation effectiveness. Our study revealed that lateral sizes of the obtained FLG depend on the choice of exfoliating media and the diameter of a sonotrode used. This variability offers flexibility in producing FLG of different sizes, applicable in a wide spectrum of size-specific applications.

2.
Ultrason Sonochem ; 96: 106376, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36941183
3.
Ultrason Sonochem ; 94: 106328, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36801674

RESUMO

This paper follows our earlier work where a strong high frequency pressure peak has been observed as a consequence of the formation of shock waves due to the collapse of cavitation bubbles in water, excited by an ultrasonic source at 24 kHz. We study here the effects of liquid physical properties on the shock wave characteristics by replacing water as the medium successively with ethanol, glycerol and finally a 1:1 ethanol-water solution. The pressure frequency spectra obtained in our experiments (from more than 1.5 million cavitation collapsing events) show that the expected prominent shockwave pressure peak was barely detected for ethanol and glycerol, particularly at low input powers, but was consistently observed for the 1:1 ethanol-water solution as well as in water, with a slight shift in peak frequency for the solution. We also report two distinct features of shock waves in raising the frequency peak at MHz (inherent) and contributing to the raising of sub-harmonics (periodic). Empirically constructed acoustic pressure maps revealed significantly higher overall pressure amplitudes for the ethanol-water solution than for other liquids. Furthermore, a qualitative analysis revealed that mist-like patterns are developed in ethanol-water solution leading to higher pressures.

4.
ACS Sustain Chem Eng ; 11(1): 58-66, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36643002

RESUMO

Achieving a sustainable production of pristine high-quality graphene and other layered materials at a low cost is one of the bottlenecks that needs to be overcome for reaching 2D material applications at a large scale. Liquid phase exfoliation in conjunction with N-methyl-2-pyrrolidone (NMP) is recognized as the most efficient method for both the exfoliation and dispersion of graphene. Unfortunately, NMP is neither sustainable nor suitable for up-scaling production due to its adverse impact on the environment. Here, we show the real potential of green solvents by revealing the independent contributions of their exfoliation efficiency and graphene dispersibility to the graphene yield. By experimentally separating these two factors, we demonstrate that the exfoliation efficiency of a given solvent is independent of its dispersibility. Our studies revealed that isopropanol can be used to exfoliate graphite as efficiently as NMP. Our finding is corroborated by the matching ratio between the polar and dispersive energies of graphite and that of the solvent surface tension. This direct evidence of exfoliation efficiency and dispersibility of solvents paves the way to developing a deeper understanding of the real potential of sustainable graphene manufacturing at a large scale.

5.
Ultrason Sonochem ; 90: 106187, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198250

RESUMO

Graphene dispersions in water are highly desirable for a range of applications such as biomedicines, separation membranes, coatings, inkjet printing and more. Recent novel research has been focussed on developing a green approach for scalable production of graphene. However, one important parameter, which is often neglected is the bulk temperature of the processing liquid. This paper follows our earlier work where optimal sono-exfoliation parameters of graphite in aqueous solutions were determined based on the measured acoustic pressure fields at various temperatures and input powers. Here, we take the next step forward and demonstrate using systematic characterisation techniques and acoustic pressure measurements that sonication-assisted liquid phase exfoliation (LPE) of graphite powder can indeed produce high quality few layer graphene flakes in pure water at a specific temperature, i.e. 40 °C, and at an optimised input generator power of 50%, within 2-h of processing. UV-vis analysis also revealed that the exfoliation, stability and uniformity of dispersions were improved with increasing temperature. We further confirmed the successful exfoliation of graphene sheets with minimal level of defects in the optimized sample with the help of Raman microscopy and transmission electron microscopy. This study demonstrated that understanding and controlling processing temperature is one of the key parameters for graphene exfoliation in water which offers a potential pathway for its large-scale production.

6.
Ultrason Sonochem ; 89: 106158, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36103805

RESUMO

The volume of fluid (VOF) and continuous surface force (CSF) methods were used to develop a bubble dynamics model for the simulation of bubble oscillation and implosion dynamics under ultrasound. The model was calibrated and validated by the X-ray image data acquired by ultrafast synchrotron X-ray. Coupled bubble interactions with bulk graphite and freely moving particles were also simulated based on the validated model. Simulation and experiments quantified the surface instability developed along the bubble surface under the influence of ultrasound pressure fields. Once the surface instability exceeds a certain amplitude, bubble implosion occurs, creating shock waves and highly deformed, irregular gas-liquid boundaries and smaller bubble fragments. Bubble implosion can produce cyclic impulsive stresses sufficient enough to cause µs fatigue exfoliation of graphite layers. Bubble-particle interaction simulations reveal the underlying mechanisms for efficient particle dispersion or particle wrapping which are all strongly related to the oscillation dynamics of the bubbles and the particle surface properties.


Assuntos
Grafite , Propriedades de Superfície , Ultrassom , Raios X
7.
Ultrason Sonochem ; 80: 105820, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763212

RESUMO

Grain refinement in alloys is a well-known effect of ultrasonic melt processing. Fragmentation of primary crystals by cavitation-induced action in liquid metals is considered as one of the main driving mechanisms for producing finer and equiaxed grain structures. However, in-situ observations of the fragmentation process are generally complex and difficult to follow in opaque liquid metals, especially for the free-floating crystals. In the present study, we develop a transparent test rig to observe in real time the fragmentation potential of free-floating primary Al3Zr particles under ultrasonic excitation in water (an established analogue medium to liquid aluminium for cavitation studies). An effective treatment domain was identified and fragmentation time determined using acoustic pressure field mapping. For the first time, real-time high-speed imaging captured the dynamic interaction of shock waves from the collapsing bubbles with floating intermetallic particles that led to their fragmentation. The breakage sequence as well as the cavitation erosion pattern were studied by means of post-treatment microscopic characterisation of the fragments. Fragment size distribution and crack patterns on the fractured surface were then analysed and quantified. Application of ultrasound is shown to rapidly (<10 s) reduce intermetallic size (from 5 mm down to 10 µm), thereby increasing the number of potential nucleation sites for the grain refinement of aluminium alloys during melt treatment.

8.
Ultrason Sonochem ; 79: 105792, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34666238

RESUMO

Ultrasonic de-agglomeration and dispersion of oxides is important for a range of applications. In particular, in liquid metal, this is one of the ways to produce metal-matrix composites reinforced with micron and nano sized particles. The associated mechanism through which the de-agglomeration occurs has, however, only been conceptualized theoretically and not yet been validated with experimental observations. In this paper, the influence of ultrasonic cavitation on SiO2 and MgO agglomerates (commonly found in lightweight alloys as reinforcements) with individual particle sizes ranging between 0.5 and 10 µm was observed for the first time in-situ using high-speed imaging. Owing to the opacity of liquid metals, a de-agglomeration imaging experiment was carried out in de-ionised water with sequences captured at frame rates up to 50 kfps. In-situ observations were further accompanied by synchronised acoustic measurements using an advanced calibrated cavitometer, to reveal the effect of pressure amplitude arising from oscillating microbubbles on oxide de-agglomeration. Results showed that ultrasound-induced microbubble clusters pulsating chaotically, were predominantly responsible for the breakage and dispersion of oxide agglomerates. Such oscillating cavitation clusters were seen to capture the floating agglomerates resulting in their immediate disintegration. De-agglomeration of oxides occurred from both the surface and within the bulk of the aggregate. Microbubble clusters oscillating with associated emission frequencies at the subharmonic, 1st harmonic and low order ultra-harmonics of the driving frequency were deemed responsible for the breakage of the agglomerates.

9.
Ultrason Sonochem ; 76: 105647, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34182315

RESUMO

Scaling up ultrasonic cavitation melt treatment (UST) requires effective flow management with minimised energy requirements. To this end, container dimensions leading to the resonance play a crucial role in amplifying pressure amplitude for cavitation. To quantify the importance of resonance length during the treatment of liquid aluminium, we used calibrated high-temperature cavitometers (in the range of 8-400 kHz), to measure and record the acoustic pressure profiles inside the cavitation-induced environment of liquid Al and deionized water (used as an analogue to Al) excited at 19.5 kHz. To achieve a comprehensive map of the acoustic pressure field, measurements were conducted at three different cavitometer positions relative to the vibrating sonotrode probe and for a number of resonant and non-resonant container lengths based on the speed of sound in the treated medium. The results showed that the resonance length affected the pressure magnitude in liquid Al in all cavitometer positions, while water showed no sensitivity to resonance length. An important practical application of UST in aluminium processing concerns grain refinement. For this reason, grain size analysis of UST-treated Al-Cu-Zr-Ti alloy was used as an indicator of the melt treatment efficiency. The result showed that the treatment in a resonance tank of L=λAl (the wavelength of sound in Al) gave the best structure refinement as compared to other tested lengths. The data given here contribute to the optimisation of the ultrasonic process in continuous casting, by providing an optimum value for the critical compartment (e.g. in a launder of direct-chill casting) dimension.

10.
Ultrason Sonochem ; 70: 105260, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32818723

RESUMO

One of the main applications of ultrasonic melt treatment is the grain refinement of aluminium alloys. Among several suggested mechanisms, the fragmentation of primary intermetallics by acoustic cavitation is regarded as very efficient. However, the physical process causing this fragmentation has received little attention and is not yet well understood. In this study, we evaluate the mechanical properties of primary Al3Zr intermetallics by nano-indentation experiments and correlate those with in-situ high-speed imaging (of up to 1 Mfps) of their fragmentation process by laser-induced cavitation (single bubble) and by acoustic cavitation (cloud of bubbles) in water. Intermetallic crystals were chemically extracted from an Al-3 wt% Zr alloy matrix. Mechanical properties such as hardness, elastic modulus and fracture toughness of the extracted intermetallics were determined using a geometrically fixed Berkovich nano-diamond and cube corner indenter, under ambient temperature conditions. The studied crystals were then exposed to the two cavitation conditions mentioned. Results demonstrated for the first time that the governing fragmentation mechanism of the studied intermetallics was due to the emitted shock waves from the collapsing bubbles. The fragmentation caused by a single bubble collapse was found to be almost instantaneous. On the other hand, sono-fragmentation studies revealed that the intermetallic crystal initially underwent low cycle fatigue loading, followed by catastrophic brittle failure due to propagating shock waves. The observed fragmentation mechanism was supported by fracture mechanics and pressure measurements using a calibrated fibre optic hydrophone. Results showed that the acoustic pressures produced from shock wave emissions in the case of a single bubble collapse, and responsible for instantaneous fragmentation of the intermetallics, were in the range of 20-40 MPa. Whereas, the shock pressure generated from the acoustic cavitation cloud collapses surged up to 1.6 MPa inducing fatigue stresses within the crystal leading to eventual fragmentation.

11.
Materials (Basel) ; 13(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861786

RESUMO

Quantitative understanding of the interactions of ultrasonic waves with liquid and solidifying metals is essential for developing optimal processing strategies for ultrasound processing of metal alloys in the solidification processes. In this research, we used the synchrotron X-ray high-speed imaging facility at Beamline I12 of the Diamond Light Source, UK to study the dynamics of ultrasonic bubbles in a liquid Sn-30wt%Cu alloy. A new method based on the X-ray attenuation for a white X-ray beam was developed to extract quantitative information about the bubble clouds in the chaotic and quasi-static cavitation regions. Statistical analyses were made on the bubble size distribution, and velocity distribution. Such rich statistical data provide more quantitative information about the characteristics of ultrasonic bubble clouds and cavitation in opaque, high-temperature liquid metals.

12.
Materials (Basel) ; 12(19)2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590463

RESUMO

The prediction of the acoustic pressure field and associated streaming is of paramount importance to ultrasonic melt processing. Hence, the last decade has witnessed the emergence of various numerical models for predicting acoustic pressures and velocity fields in liquid metals subject to ultrasonic excitation at large amplitudes. This paper summarizes recent research, arguably the state of the art, and suggests best practice guidelines in acoustic cavitation modelling as applied to aluminium melts. We also present the remaining challenges that are to be addressed to pave the way for a reliable and complete working numerical package that can assist in scaling up this promising technology.

13.
Ultrason Sonochem ; 54: 171-182, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30755390

RESUMO

Acoustic streaming and its attendant effects in the sump of a direct-chill (DC) casting process are successfully predicted under ultrasonic treatment for the first time. The proposed numerical model couples acoustic cavitation, fluid flow, heat and species transfer, and solidification to predict the flow pattern, acoustic pressure, and temperature fields in the sump. The model is numerically stable with time steps of the order of 0.01 s and therefore computationally attractive for optimization studies necessitating simulation times of the order of a minute. The sump profile is altered by acoustic streaming, with the slurry region depressed along the centreline of the billet by a strong central jet. The temperature gradient in the transition zone is increased, potentially interfering with grain refinement. The cooling rate in the sump is also altered, thereby modifying the dendrite arm spacing of the as-cast billet. The relative position of the sonotrode affects the sump profile, with the sump depth decreased by around 5 mm when the sonotrode is moved above the graphite ring level by 100 mm. The acoustic streaming jet penetrates into the slurry zone and, as a result, the growth direction of dendritic grains in the off-centre position is altered.

14.
Ultrason Sonochem ; 55: 243-255, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30733147

RESUMO

The acoustic streaming behaviour below an ultrasonic sonotrode in water was predicted by numerical simulation and validated by experimental studies. The flow was calculated by solving the transient Reynolds-Averaged Navier-Stokes equations with a source term representing ultrasonic excitation implemented from the predictions of a nonlinear acoustic model. Comparisons with the measured flow field from Particle Image Velocimetry (PIV) water experiments revealed good agreement in both velocity magnitude and direction at two power settings, supporting the validity of the model for acoustic streaming in the presence of cavitating bubbles. Turbulent features measured by PIV were also recovered by the model. The model was then applied to the technologically important area of ultrasonic treatment of liquid aluminium, to achieve the prediction of acoustic streaming for the very first time that accounts for nonlinear pressure propagation in the presence of acoustic cavitation in the melt. Simulations show a strong dependence of the acoustic streaming flow direction on the cavitating bubble volume fraction, reflecting PIV observations. This has implications for the technological use of ultrasound in liquid metal processing.

15.
Ultrason Sonochem ; 52: 336-343, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30573433

RESUMO

Hydraulic components are coated by thermal spraying to protect them against cavitation erosion. These coatings are built up by successive deposition of single splats. The behavior of a single splat under mechanical loading is still very vaguely understood. Yttria-stabilized zirconia (YSZ) and stainless-steel splats were obtained by plasma spraying onto stainless steel substrates. The velocity and temperature of particles upon impact were measured and the samples were subsequently exposed to cavitation erosion tests. An acoustic cavitation simulation estimated the water jet velocity and hammer stresses exerted by bubble collapse on the surface of the specimen. Although the results suggested that high stress levels resulted from cavitation loading, it was clear that weak adhesion interfaces played a crucial role in the accelerated cavitation-induced degradation.

16.
Ultrason Sonochem ; 42: 411-421, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429686

RESUMO

In an attempt to quantify the instantaneous pressure field in cavitating liquids at large forcing signals, pressures were measured in four different liquids contained in vessels with a frequency mode in resonance with the forcing signal. The pressure field in liquid metal was quantified for the first time, with maximum pressures of the order of 10-15 MPa measured in liquid aluminium. These high pressures are presumed to be responsible for deagglomeration and fragmentation of dendritic intermetallics and other inclusions. Numerical modelling showed that acoustic shielding attenuates pressure far from the sonotrode and it is prominent in the transparent liquids studied but less so in aluminium, suggesting that aluminium behaviour is different. Due to acoustic shielding, the numerical model presented cannot adequately capture the pressure field away from the intense cavitation zone, but gives a good qualitative description of the cavitation activity. The results obtained contribute to understanding the process of ultrasonic melt treatment (UST) of metal alloys, while facilitating further the guidelines formulation and reproducible protocols for controlling UST at industrial levels.

17.
Ultrason Sonochem ; 39: 66-76, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732991

RESUMO

The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al3Ti, Si and Al3V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties.

18.
Artigo em Inglês | MEDLINE | ID: mdl-26565329

RESUMO

Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA