Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121074, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754188

RESUMO

Hazardous Cr(VI) continues to pose critical concerns for environmental and public health, demanding the development of effective remediation methods. In this study, thiol-functionalized black carbon (S-BC) was proposed for Cr(VI) removal by mixing thioglycolic acid (TGA) with black carbon (BC) derived from rice straw residue at 80 °C for 8 h. Using a 1:40 (g mL-1) BC-to-TGA ratio, the resulting S-BC40 sample demonstrated significantly enhanced Cr(VI) sorption capacities of 201.23, 145.78, and 106.60 mg g-1 at pH 3.5, 5.5, and 7.5, surpassing its BC counterpart by 2.0, 2.3, and 2.2 times. Additionally, S-BC40 converted all sorbed Cr into Cr(III) species at pH ≥ 5.5, resulting in an equal distribution of Cr(OH)3 and organic Cr(III) complexes. However, approximately 13% of Cr sorbed on BC remained as Cr(VI) at pH 3.5 and 7.5. Both C-centered and S-centered thiyl radicals might contribute to Cr(VI) reduction; however, sufficient C-S groups replenished via thiol-functionalization was the key for the complete Cr(VI) reduction on S-BC samples as pH ≥ 5.5. Thanks to the exceptional Cr(VI) sorption capacity, affordability, and accessibility, thiol-functionalization stands out as a promising modification method for BC. It presents a distinct opportunity to concurrently achieve the objectives of efficient Cr(VI) remediation and waste recycling.

2.
J Environ Manage ; 348: 119316, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862893

RESUMO

The accumulation of allelochemicals released by plants is commonly found in continuous monocropping systems. These chemicals, such as phenolic acids, were shown to be the major sources of autotoxin or pathogen accumulation in soils, leading to a direct or indirect continuous cropping obstacle. In this study, three types of agricultural residuals, i.e., rice husk, tea waste, and wood meal, were chosen as feedstocks. Biochar samples were prepared from these feedstocks to examine their abilities to remove gallic acid, a representative phenolic acid. Biochar, which was prepared from wood meal soaked with H3PO4 (1:1.5, w/w) and pyrolyzed at 400 °C (symbolized as WP400), exhibited the highest adsorption capacities of gallic acids and other phenolic acids. The mechanisms of phenolic acid removal by WP400 were evaluated via experimental and spectroscopic investigations to elucidate the notable adsorption capacity of WP400. The adsorption of gallic acids was pH-dependent and followed a pseudo-second-order kinetic model. The combination of high surface area, the existence of O-containing groups, and the enhancement of H bonds between CC groups and phenolic acids may contribute to the high adsorption capacity of WP400. In a pot experiment, we found that celery growth was promoted with the addition of 0.3% (w/w) WP400 to soils that were continuously monocropped with celery. A large decrease in the water-soluble phenolic compound by more than 40% may be responsible for the results. However, WP400 scavenged nitrate, and this study showed that the synergistic actions of WP400 and nutrients exhibited the greatest efficiencies in mitigating the continuous cropping obstacles of celery.


Assuntos
Apium , Poluentes Químicos da Água , Disponibilidade Biológica , Carvão Vegetal/química , Solo/química , Adsorção , Poluentes Químicos da Água/química
3.
J Colloid Interface Sci ; 636: 459-469, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641821

RESUMO

Poly- and perfluoro alkyl substances (PFAS) are a group of man-made, notoriously persistent, and highly toxic contaminants in the environment reported worldwide. Many adsorbents including granular activated carbon, graphene, biochar, zeolites, and clay minerals have been tested for PFAS removal from water, but most of these materials suffer from high cost and/or poor removal performance. Here, we synthesized, characterized, and examined the efficiency of PCN-222(Fe), a new porous metal organic framework (MOF) with high water stability, for adsorptive removal of a frequently occurring PFAS, perfluorooctane sulfonate (PFOS), from water. The adsorption isotherm and kinetic studies revealed high PFOS adsorption capacity of PCN-222 (2257 mg/g), with rapid PFOS removal rate (within 30 min). The structure of PCN-222 was unaffected in water in the pH range of 2-10 but disintegrated and lost its PFOS removal ability at pH > 10. The PFOS adsorption on PCN-222 was an endothermic reaction. Electrostatic attraction was a dominant mechanism for PFOS adsorption at < 1694 mg/g PFOS concentration, while hydrophobic interaction accompanied with hydrogen-bonding was responsible at ≥ 1694 mg/g PFOS concentration. The interlayer morphology of PCN-222 did not change due to increasing PFOS loading. The findings of this study demonstrated superior features of PCN-222 over other conventional adsorbents for its potential application in removing PFOS from contaminated water to reduce PFOS transfer from water to living organisms.

4.
Chemosphere ; 316: 137737, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608877

RESUMO

Dissolved organic matter (DOM) is distributed ubiquitously in water bodies. Ferric ions can flocculate DOM to form stable coprecipitates; however, Al(III) may alter the structures and stability of Fe-DOM coprecipitates. This study aimed to examine the coprecipitation of Fe, Al, and DOM as well as structural developments of Fe-DOM coprecipitates in relation to changes in Fe/Al ratios and pHs. The results showed that the derived Fe/Al/DOM-coprecipitates could be classified into three categories: (1) at pH 3.0 and 4.5, the corner-sharing FeO6 octahedra associated with Fe-C bonds with Fe/(Fe + Al) ratios ≥0.5; (2) the Fe-C bonds along with single Fe octahedra having Fe/(Fe + Al) ratios of 0.25; (3) at pH 6.0, the ferrihydrite-like Fe domains associated with Fe-C bonds with Fe/(Fe + Al) ratios ≥0.5. At pH 3.0, the Fe and C stability of the coprecipitates increased with increasing Al proportions; nonetheless, pure Al-DOM coprecipitates were unstable even if they exhibited the maximum ability for DOM removal. The associations of Al-DOM complexes and/or DOM-adsorbed Al domains with external surfaces of Fe domain or Fe-DOM coprecipitates may stabilize DOM, leading to lower C solubilization at pH 4.5. Although the preferential formation of Fe/Al hydroxides decreased Fe/Al solubilization at pH 6.0, adsorption instead of coprecipitation of DOM with Fe/Al hydroxides may decrease C stabilization in the coprecipitates. Aluminum cations inhibit DOM releases from Fe/Al/DOM-coprecipitates, promoting the treatment and reuse efficiencies of wastewater and resolving water shortages. This study demonstrates that Al and solution pH greatly affect the structural changes of Fe-DOM coprecipitates and indirectly control the dynamics of Fe, Al, and C concentrations in water.


Assuntos
Matéria Orgânica Dissolvida , Sais , Compostos Férricos/química , Hidróxidos/química , Ferro/química , Água , Compostos de Alumínio/química
5.
Chemosphere ; 310: 136865, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244422

RESUMO

Castor cake is a major by-product generated after castor oil extraction and has been widely used as an organic fertilizer. Once applied to soil, a toxic alkaloid ricinine in castor cake may be released into soils and subsequently taken up by crops, which poses a potential threat to food safety and human health. However, the environmental fate of castor cake derived ricinine in agroecosystems remains unclear. In this study, the release and metabolism of ricinine in soils were conducted using soil pot experiments with different castor cake application rates. The analytical methodology of ricinine quantification in soil pore water was first established using solid phase extraction (SPE) coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A non-target screening workflow associated with LC-QTOF/MS and SIRIUS platform was further developed to identify ricinine metabolites in soil pore water. After castor cake application, the ricinine concentrations in soil pore water significantly increased to 297-7990 µg L-1 at 1 day and then gradually decreased to 62.1-3460 µg L-1 at 7 days and 1.70-279 µg L-1 at 14 days for the selected two tested soils with castor cake application rates of 2, 10, and 20 g castor cake/kg soil. In addition, two ricinine metabolites R-194 and R-180 were tentatively identified and one ricinine metabolite N-demethyl-ricinin was confirmed through authentic reference standard for the first time by the developed non-target screening workflow. This study highlights the release and metabolism of toxic alkaloid ricinine in soils once applied castor cake as an organic fertilizer. Ricinine could be released into soil pore water in a short-term after castor cake application and then undergo demethylation, hydroxylation, and hydroxylation followed by methylation metabolisms over time in agroecosystems.


Assuntos
Alcaloides , Fertilizantes , Humanos , Fertilizantes/análise , Solo , Óleo de Rícino , Fluxo de Trabalho , Cromatografia Líquida , Alcaloides/análise , Espectrometria de Massas , Água/análise
6.
J Hazard Mater ; 445: 130334, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462243

RESUMO

Thermoacidophilic Cyanidiales maintain a competitive edge in inhabiting extreme environments enriched with metals. Here, species of Cyanidioschyzon merolae (Cm), Cyanidium caldarium (Cc), and Galdieria partita (Gp) were exploited to remove hexavalent chromium [Cr(VI)]. Cm and Gp could remove 168.1 and 93.7 mg g-1 of Cr(VI) at pH 2.0 and 7.0, respectively, wherein 89% and 62% of sorbed Cr on Cm and Gp occurred as trivalent chromium [Cr(III)]. Apart from surface-sorbed Cr(VI), the in vitro Cr(III) bound with polysaccharide and in vivo chromium(III) hydroxide [Cr(OH)3] attested to the reduction capability of Cyanidiales. The distribution of Cr species varied as a function of sorbed Cr amount, yet a relatively consistent proportion of Cr(OH)3, irrespective of Cr sorption capacity, was found only on Cm and Cc at pH 2.0. In conjunction with TXM (transmission X-ray microscopy) images that showed less impaired cell integrity and possible intracellular Cr distribution on Cm and Cc at pH 2.0, the in vivo Cr(OH)3 might be the key to promoting the Cr sorption capacity (≥ 152 mg g-1). Cyanidiales are promising candidates for the green and sustainable remediation of Cr(VI) due to their great removal capacity, the spontaneous reduction under oxic conditions, and in vivo accumulation.


Assuntos
Cromo , Microscopia , Adsorção
7.
J Colloid Interface Sci ; 633: 979-991, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36509040

RESUMO

Adsorption behavior of ranitidine hydrochloride (RT) on a Ca-montmorillonite (SAz-1) was studied in aqueous system through batch experiments. The adsorption kinetics revealed that the equilibrium reached within 0.25 h and the data fitted well to the pseudo-second order kinetic equation (R2 = 0.98). The maximum RT adsorption capacity of SAz-1 was 369.2 mg/g and the adsorption isotherm data followed the Langmuir model (R2 = 0.99). The adsorption of RT and desorption of exchangeable cations from the clay mineral were linearly correlated, suggesting that cation exchange was the dominant mechanism of RT adsorption. The XRD examination of RT-adsorbed SAz-1 samples (unsaturated/saturated) after heating enabled the calculation of RT occupied area in the interlayer of the clay mineral. The results suggested that adsorbed-RT at low loading rate could lay on the internal surfaces in a free style to reduce the basal spacing (d001 value) of SAz-1. When the RT loading rate was increased, a limited surface space enforced more RT molecules to lay in a tilted style and caused interlayer swelling of SAz-1 increasing the d001 value. The trend of rising decomposition temperature of RT with increasing RT loading rates confirmed intercalation of RT molecules in SAz-1. Infrared spectral analysis revealed the participation of amide and furan groups of RT in binding between RT and SAz-1. Thus, this study indicated that SAz-1 is an efficient adsorbent to remove RT from contaminated water, and the chain-like molecular structure of RT could cause an irregular change in the basal spacing of swelling type clay minerals.


Assuntos
Bentonita , Ranitidina , Bentonita/química , Adsorção , Argila , Minerais , Cátions , Água
8.
Front Microbiol ; 14: 1242217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260898

RESUMO

Land degradation is a major threat to ecosystem. Long-term conventional farming practices can lead to severe soil degradation and a decline in crop productivity, which are challenging for both local and global communities. This study was conducted to clarify the responses on soil physicochemical properties and microbial communities to changes in farming practices. Slope land orchards under three agricultural management practices-conventional farming (CF), organic farming (OF), and ecofriendly farming (EFF)-were included in this study. We found that soil carbon stock increased by 3.6 and 5.1 times in surface soils (0-30 cm) under EFF and OF treatments, respectively. EFF and OF significantly increased the contents of total nitrogen by 0.33-0.46 g/kg, ammonia-N by 3.0-7.3 g/kg, and microbial biomass carbon by 0.56-1.04 g/kg but reduced those of pH by 0.6 units at least, and available phosphorous by 104-114 mg/kg. The application of phosphorous-containing herbicides and chemical fertilizers might increase the contents of phosphorous and nitrate in CF soil. High abundances of Acidobacteria and Actinobacteria were observed in EFF and OF soils, likely because of phosphorous deficiency in these soils. The abundance of fungi in OF soil indicated that plants' demand for available soil phosphorous induced the fungus-mediated mineralization of organic phosphorous. High abundances of Gammaproteobacteria, Planctomycetes, Firmicutes, and Nitrospirae were observed in CF soil, possibly because of the regular use of herbicides containing phosphorous and chemical fertilizers containing high total nitrogen contents.

9.
Ecotoxicol Environ Saf ; 245: 114084, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152429

RESUMO

Hexavalent chromium [Cr(VI)] and arsenite [As(III)] are hazardous to both human and ecosystem. While their cross-redox reaction decreases both their toxicities, the interferences from ubiquitous substances like Fe (Fe(II) and Fe(III)) and organic compounds (oxalic acid and soil-extracted dissolved organic carbon (DOC)) on such interaction are rarely reported; thence, inspires the investigation in this study. Results showed that the cross-redox, in the absence of interfering substances, only occurred at pH≤2.0, with reaction orders of 0.676 and 0.783 in respect to the concentration of Cr(VI) and As(III). The pseudo-reaction constant, k', of such reaction was recorded at 0.087 m1.377/(mmol0.459 min). With the addition of Fe(II), the rate of Cr(VI) reduction is promoted in conjunction with suppressed As(III) oxidation. Upon neutralizing to pH 6.0, such reduced Cr can be entirely removed via Fe(II)-assisted adsorption and/or co-precipitation. Meanwhile, the elimination of aqueous As is relatively inferior (36 %), attributed to the largely preserved As(III), which is less susceptible to adsorptive/co-precipitative removal. Unlike Fe(II), Fe(III) did not alter Cr(VI)-As(III) cross-redox path, but triggered high adsorptive and/or co-precipitative removals of Cr and As (90 %). In contrast, both organically-altered systems exhibits plummeted As(III) oxidation, under distinctive mechanisms: oxalic acid competes with As(III) in the redox interactions while DOC reduces As(V) into As(III). Also, DOC would undergo complexion with metals and/or blocked the adsorption or co-precipitation sites, leading to even lower Cr and As precipitation. This study unravelled the interference from ubiquitous species in the co-removal of Cr(VI) and As(III), which provides insightful remediation for heavy metal contaminations.


Assuntos
Arsenitos , Ácido Oxálico , Cromo/análise , Matéria Orgânica Dissolvida , Ecossistema , Compostos Férricos , Compostos Ferrosos/química , Humanos , Oxirredução , Solo
10.
J Colloid Interface Sci ; 623: 627-636, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35598489

RESUMO

Perfluorooctane sulfonate (PFOS) is a highly persistent contaminant of emerging concern causing harmful effects to human and ecosystem health. In this study, a novel MOF-808 metal-organic framework (MOF) was prepared and evaluated for adsorptive removal of PFOS from aqueous solution. The MOF-808 had high specific surface area (SSA; 1610 m2/g) and was structurally stable in aqueous medium for 7 days under different pH conditions. The MOF-808 reached PFOS adsorption equilibrium within 30 min (at 500 mg/L initial PFOS) and attained the maximum adsorption capacity of 939 mg/g at pH 4.1 - 5.4 (with 50 - 500 mg/L initial PFOS). The PFOS adsorption capacity of MOF-808 was unaffected at pH 2 to 7, but gradually decreased at pH > 7. High SSA, favorable pore size and abundant active adsorption sites on MOF-808 triggered high PFOS adsorption onto the adsorbent. The PFOS adsorption process was endothermic and spontaneous in nature. Electrostatic interaction between the cationic central cluster ([Zr6O4(OH)4]12+) of MOF-808 and PFOS anion was identified as the key mechanism of PFOS adsorption onto MOF-808, as evident from the infrared spectroscopic investigation of the adsorbent. This study suggests that MOF-808 can be considered as a highly efficient adsorbent for PFOS removal from water and warrants future research to evaluate the application and performance of the material under wastewater conditions.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Ácidos Alcanossulfônicos , Ecossistema , Fluorocarbonos , Humanos , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
11.
J Colloid Interface Sci ; 598: 379-387, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915416

RESUMO

Amitriptyline (AMI) is one of the most common tricyclic antidepressant personal care medications. Due to its environmental persistence and bioaccumulation, release of AMI into the environment via wastewater streams in elevated levels could lead to significant ecological and human health impacts. In this study, the adsorption of AMI by montmorillonite (SWy-2), a naturally abundant smectite clay with sodium ions as the main interlayer cations, was investigated. Maximum AMI adsorption (276 mg/g) occurred at pH 7-8. After adsorption, examination of the adsorbent's X-ray diffraction pattern indicated that interlayer expansion had occurred, where chemical stoichiometry confirmed cation exchange as the principal adsorption mechanism. AMI adsorption reached equilibrium within 4 h, with kinetic data best fitting the pseudo-second order kinetic model (R2 = 0.98). AMI adsorption was unaffected by solution pH in the range 2-11, where adsorption was endothermic, and molecular simulations substantiated by Fourier transform infrared spectroscopy and thermogravimetric investigations indicated that the orientation of AMI molecules in the interlayer was via an amine group and a benzene ring. Overall this research shows that SWy-2 has significant potential as a low cost, effective, and geologically derived natural material for AMI removal in wastewater systems.


Assuntos
Bentonita , Poluentes Químicos da Água , Adsorção , Amitriptilina , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/análise
12.
Ecotoxicol Environ Saf ; 201: 110800, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540617

RESUMO

Surface fires occur naturally or anthropogenically and can raise the temperature at the soil surface up to 600 °C. The heat derived from the surface fire can be subsequently transferred into CO2-enriched subsoils. As a result, the chemical compositions of soil organic matter (SOM) may be altered in fire-impacted anaerobic environments, indirectly influencing the redox transformations of pollutants, such as Cr(VI). In this study, a peat soil was heated up to 600 °C with limited air flow to simulate the effects of heat on the SOM during surface fire events. Then, Cr(VI) removal, including reduction and sorption, by the heat-treated peat soils was determined in relation to changes in the soil organic components. The results showed that the amount of O-containing functional groups, -CH2/-CH3 units of aliphatic groups, and dissolved organic carbon (DOC) in the SOM gradually decreased with an increase in the heating temperature. The removal of 0.1932 mM Cr(VI) did not exhibit a consistent decline along with the changes in these soil components. The heating temperatures of 200 and 250 °C were the thresholds that led to the decomposition of temperature-sensitive soil organic components such as lignin and other labile SOM. Such newly released organic fragments synergized lignin-like substances and carboxyl groups, resulting in up to 99% removal of the initially added Cr(VI). As the heating temperatures were increased from 300 to 600 °C, Cr(VI) reduction decreased from 66% to 20%. The black carbon-like materials and/or aromatic-containing moieties were the major components responsible for Cr(VI) reduction in 600°C-treated peat soils.


Assuntos
Cromo/análise , Temperatura Alta , Substâncias Húmicas/análise , Lignina/química , Poluentes do Solo/análise , Solo/química , Oxirredução
13.
Environ Pollut ; 261: 114024, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32045790

RESUMO

Chromium (VI) reduction by organic compounds is one of the major pathways to alleviate the toxicity and mobility of Cr(VI) in the environment. However, oxidative products of organic molecules receive less scientific concerns. In this study, hydroquinone (H2Q) was used as a representative organic compound to determine the redox reactions with Cr(VI) and the concomitant oxidative products. Spectroscopic analyses showed that Cr(III) hydroxides dominated the precipitates produced during redox reactions of Cr(VI) and H2Q. For the separated filtrates, the acidification induced the oxidative polymerization of organic molecules, accompanied with the complexation with Cr(III). The aromatic domains dominated the chemical structures of the black and fluffy organic polymers, which was different to the natural humic acids due to the shortage of aliphatic chains. Results of linear combination fitting (LCF) for Cr K-edge X-ray absorption near edge structure (XANES) spectra demonstrated that up to 90.4% of Cr inventory in precipitates derived after the acidification of filtrates was Cr(III) complexed with humic-like polymers, suggesting that Cr(III) possibly acted as a linkage among organic molecules during the polymerization processes of H2Q. This study demonstrated that Cr(VI) may lead to the polymerization of organic molecules in an acidic solution, and thus, it could raise scientific awareness that the oxidative decomposition of organic molecules may not be the only pathway while interacting with the strong oxidant of Cr(VI).


Assuntos
Cromo , Hidroquinonas , Substâncias Húmicas/análise , Oxirredução , Polimerização
14.
J Hazard Mater ; 375: 312-319, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31082720

RESUMO

Although nonionic surfactants are relatively eco-friendly compared with cationic and anionic surfactants, few studies have investigated their application in modified clay. Herein we prepared organo-clay composites (OCCs) by mixing bentonite-enriched clay (BEC) with nonionic surfactants (Brij 30 and Igepal CO-890) and determined if these modifications would enable chickens to detoxify aflatoxin B1 (AFB1). For the first time, in situ three-dimensional (3-D) microstructures of modified BEC was characterized in suspension using transmission X-ray microscopy. Although X-ray diffraction patterns indicated the expansion in the spacing between planes of atoms (basal spacing) of surfactant-modified BEC, 3-D images indicated shrinkage in its microscale porous framework with increasing surfactant additions from 1 to 30 wt%. Such declining trends in porous dimensions caused by the dehydration in interlayer galleries of clays positively correlated with sorption amounts of AFB1 on OCCs. After chickens had consumed amended feeds for 11 weeks, AFB1 concentrations in liver, kidney, and plasma were significantly lower than in the control treatment. Thus, we suggest using BEC with 1 wt% surfactant addition, an amendment to chicken feeds, to detoxify AFB1. Modifying BEC with nonionic surfactants show the promise in mitigating AFB1 accumulation in chickens, which should improve food safety and reduce environmental contamination.


Assuntos
Aflatoxina B1/química , Ração Animal , Bentonita/química , Argila/química , Tensoativos/química , Adsorção , Aflatoxina B1/análise , Animais , Galinhas , Rim/química , Fígado/química , Tomografia
15.
J Hazard Mater ; 376: 12-20, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31100491

RESUMO

Composites formed during the coprecipitation and/or coagulation of ubiquitous dissolved organic matter (DOM) and Fe in natural and waste water systems might be potential scavengers for Cr(VI) in terms of sorption and reduction. Our objective here was to determine sorption and simultaneous reduction of Cr(VI) on organo-Fe(III) composites (OFC) in relation coprecipitated pH and C/(C + Fe) ratios. Results showed the greatest Cr sorption of 51.8 mg g-1 on the OFC sample that was precipitated at pH 3 and contained the C/(C + Fe) molar ratio of 0.71. Wherein the Cr(VI) removal subsequent to the coprecipitation was dominated by the sorption on Fe hydroxides. Although amounts of total sorbed Cr decreased with increasing C/(C + Fe) molar ratio, the reverse trend on Cr(VI) reducibility compensated the Cr(VI) removal capability of OFC samples. With C/(C + Fe) molar ratios ≥ 0.89, the increasing amounts of coprecipitated organic matter that homogeneously distributed with Fe domains on OFC surfaces could trigger a significantly pronounced Cr reduction. Collectively, our results suggested an alternative method for Cr(VI) remediation by manipulating C/Fe ratios in suspensions. After the sorption of most Cr(VI) on Fe hydroxides, increasing C/Fe ratio in systems could further improve the Cr(VI) removal efficiency by the reduction of remaining Cr(VI) to Cr(III).

16.
Environ Pollut ; 247: 180-187, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677662

RESUMO

Hydrotalcite (HT) is a layered double hydroxide (LDH), which is considered as a potential adsorbent to remove anion contaminants. In this study, adsorption of chromate (CrO4) and phosphate (PO4) on HT was conducted at various pH and temperatures. Related adsorption mechanisms were determined via the isotherm, kinetic, and competitive adsorption studies as well as the Cr K-edge X-ray absorption fine-structure (XAFS) spectroscopy. The maximum adsorption capacities for CrO4 and PO4 on HT were 0.16 and 0.23 mmol g-1. Regarding adsorption kinetics, CrO4 and PO4 adsorption on HT could be well described by the second order model, and the rate coefficient of CrO4 and PO4 on HT decreased significantly with the increasing pH from 5 to 9. The adsorption kinetics for CrO4 and PO4 were divided into fast and slow stages with the boundary at 15 min. This biphasic adsorption behavior might be partially attributed to multiple reactive pathways including anion exchange and surface complexation. Fitting results of Cr K-edge EXAFS analysis showed a direct bonding between CrO4 and Al on HT surfaces. Such a surface complexation appeared to be the rate-limiting step for CrO4 adsorption on HT. By contrast, the diffusion through the hydrated interlayer space of HT was the major rate-limiting step for PO4. This study determined the adsorption behaviors of CrO4 and PO4 on HT, including the initial transfer process and the subsequent adsorption mechanisms. Such information could improve the strategy to use HT as the potential adsorbent for the remediation of anionic pollutants.


Assuntos
Hidróxido de Alumínio/química , Cromatos/química , Hidróxido de Magnésio/química , Modelos Químicos , Fosfatos/química , Adsorção , Hidróxidos , Cinética , Espectroscopia por Absorção de Raios X
17.
Sci Rep ; 8(1): 10363, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985471

RESUMO

Precipitation of Fe-hydroxide (FH) critically influences the sequestration of PO4 and organic matter (OM). While coatings of pre-sorbed OM block FH surfaces and decrease the PO4 adsorption capacity, little is known about how OM/Fe coprecipitation influences the PO4 adsorption. We aimed to determine the PO4 adsorption behaviors on humic acid (HA)-Fe coprecipitates in relation to surface and structural characteristics as affected by HA types and C/(C + Fe) ratios using the Fe and P X-ray absorption spectroscopy. With increasing C/(C + Fe) ratios, the indiscernible changes in the proportion of near-surface C for coprecipitates containing HA enriched in polar functional groups implied a relatively homogeneous distribution between C and Fe domains. Wherein PO4 adsorbed on FH dominated the P inventory on coprecipitates, yielding PO4 sorption properties nearly equivalent to that of pure FH. Structural disruptions of FH caused by highly associations with polar functional groups of HA enhanced the C solubilisation. While polar functional groups were limited, coprecipitates consisted of core FH with surface outgrowth of HA. Although surface-attached HA that was vulnerable to solubilisation provided alternatively sites for PO4 via ternary complex formation with Fe bridges, it also blocked FH surfaces, leading to a decrease in PO4 adsorption.

18.
R Soc Open Sci ; 5(3): 171941, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657795

RESUMO

Iron (Fe) (hydr)oxides control the mobility and bioavailability of tetracycline (TC) in waters and soils. Adsorption of TC on Fe (hydr)oxides is greatly affected by polyvalent metals; however, impacts of molar metal/TC ratios on TC adsorptive behaviours on Fe (hydr)oxides remain unclear. Results showed that maximum TC adsorption on ferrihydrite and goethite occurred at pH 5-6. Such TC adsorption was generally promoted by the addition of Cu2+, Zn2+ and Al3+. The greatest increase in TC adsorption was found in the system with molar Cu/TC ratio of 3 due to the formation of Fe hydr(oxide)-Cu-TC ternary complexes. Functional groups on TC that were responsible for the complexation with Cu2+shifted from phenolic diketone groups at Cu/TC molar ratio < 1 to amide groups at Cu/TC molar ratio ≥ 1. For the addition of Al3+, the complexation only took place with phenolic diketone groups, resulting in the enhanced TC adsorption at a molar Al/TC ratio of 1. However, TC adsorption decreased for Al/TC molar ratio > 1 as excess Al3+ led to the competitive adsorption with Al/TC complexes. For the Zn2+ addition, no significant correlation was found between TC adsorption capacity and molar Zn/TC ratios.

19.
Chemosphere ; 200: 1-7, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29471163

RESUMO

Arsenic remediation is often initiated by oxidizing As(III) to As(V) to alleviate its toxicity and mobility. Due to the easy availability, zero-valent Al (ZVAl) like Al can was considered as potential alternatives to facilitate As(III) oxidation. This study determined the capability and recycling of polyoxometalate (POM) to catalyze As(III) oxidation in Fe(II)-amended ZVAl systems. POM acquired electrons from ZVAl more effectively at pH 1 than at pH 2. While 76% of the reduced POM [POM(e-)] reacted with O2(g) to generate H2O2 at pH 1, only 60% of POM(e-) was used to produce H2O2 at pH 2. The remaining POM(e-) was oxidized by the generated H2O2. Such additional consumption of POM(e-) and H2O2 led to the incomplete As(III) oxidation in the system without residual ZVAl and emphasized the need for a continuous electron supply from ZVAl to compensate the depletion of POM(e-). After the hydrolyzation at pH 6.0, the XANES data evidenced that not only As(V) but WO4 released from the POM retained on surfaces of Al/Fe hydroxides. The competition for sorption sites on Al/Fe hydroxides between As(V) and WO4 led to the incomplete As removal. Despite the loss of WO4, the POM re-polymerized at pH 1 still showed the comparable capability to catalyze As(III) oxidation with original POM. This study revealed electron transfer pathways from ZVAl to As(III) as catalyzed by POM and evidenced the effective POM recycling after As removal, which lowers the cost of POM application and turns the ZVAl/Fe(II)/POM/O2 system into a practical strategy for As remediation.


Assuntos
Alumínio/química , Arsênio/química , Ferro/química , Reciclagem , Compostos de Tungstênio/química , Arsênio/isolamento & purificação , Catálise , Peróxido de Hidrogênio/química , Oxirredução , Oxigênio/química
20.
Environ Sci Technol ; 50(23): 12612-12620, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27782386

RESUMO

Dissolved organic matter (DOM) is capable of modifying the surfaces of soil minerals (e.g., Fe hydroxides) or even forming stable co-precipitates with Fe(III) in a neutral environment. The DOM/Fe co-precipitation may alter biogeochemical carbon cycling in soils if the relatively mobile DOM is sorbed by soil minerals against leaching, runoff, and biodegradation. In this study, we aimed to determine the structural development of DOM/Fe co-precipitates in relation to changes in pH and C/(C + Fe) ratios using XRD, XPS, Fe K-edge XAS, FTIR, and C-NEXAFS techniques. The results showed that in the system with bulk C/(C + Fe) molar ratios ≤0.65, the ferrihydrite-like Fe domains were precipitated as the core and covered by the C shells. When the C/(C + Fe) molar ratio ranged between 0.71 and 0.89, the emerging Fe-C bonding suggested a more substantial association between Fe domains including edge- and corner-sharing FeO6 octahedra and DOM. With C/(C + Fe) bulk molar ratios ≥0.92, only corner-sharing FeO6 octahedra along with Fe-C bonding were found. The homogeneously distributed C and Fe domains caused the enhancement of Fe and C solubilization from co-precipitates. The C/(C + Fe) ratios dominated structural compositions and stabilities of C/Fe co-precipitates and may directly affect the Fe and C cycles in soils.


Assuntos
Compostos Férricos/química , Ferro/química , Hidróxidos/química , Minerais/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA