Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1347744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504891

RESUMO

Introduction: Lablab (Lablab purpureus (L.) Sweet), an underutilized tropical legume crop, plays a crucial role in global food and nutritional security. To enhance our understanding of its genetic makeup towards developing elite cultivars, we sequenced and assembled a draft genome of L. purpureus accession PK2022T020 using a single tube long fragment read (stLFR) technique. Results and discussion: The preliminary assembly encompassed 367 Mb with a scaffold N50 of 4.3 Mb. To improve the contiguity of our draft genome, we employed a chromatin contact mapping (Hi-C) approach to obtain a pseudochromosome-level assembly containing 366 Mb with an N50 length of 31.1 Mb. A total of 327.4 Mb had successfully been anchored into 11 pseudomolecules, corresponding to the haploid chromosome number in lablab. Our gene prediction recovered 98.4% of the highly conserved orthologs based on the Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis. Comparative analyses utilizing sequence information from single-copy orthologous genes demonstrated that L. purpureus diverged from the last common ancestor of the Phaseolus/Vigna species approximately 27.7 million years ago. A gene family expansion analysis revealed a significant expansion of genes involved in responses to biotic and abiotic stresses. Our high-quality chromosome-scale reference assembly provides an invaluable genomic resource for lablab genetic improvement and future comparative genomics studies among legume species.

2.
Genomics ; 116(3): 110837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548034

RESUMO

Mangroves are an important part of coastal and estuarine ecosystems where they serve as nurseries for marine species and prevent coastal erosion. Here we report the genome of Sonneratia ovata, which is a true mangrove that grows in estuarine environments and can tolerate moderate salt exposure. We sequenced the S. ovata genome and assembled it into chromosome-level scaffolds through the use of Hi-C. The genome is 212.3 Mb and contains 12 chromosomes that range in size from 12.2 to 23.2 Mb. Annotation identified 29,829 genes with a BUSCO completeness of 95.9%. We identified salt genes and found copy number expansion of salt genes such as ADP-ribosylation factor 1, and elongation factor 1-alpha. Population analysis identified a low level of genetic variation and a lack of population structure within S. ovata.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Genética Populacional
3.
Front Plant Sci ; 14: 1137077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875624

RESUMO

Durian (Durio zibethinus), which yields the fruit known as the "King of Fruits," is an important economic crop in Southeast Asia. Several durian cultivars have been developed in this region. In this study, we resequenced the genomes of three popular durian cultivars in Thailand, including Kradumthong (KD), Monthong (MT), and Puangmanee (PM) to investigate genetic diversities of cultivated durians. KD, MT, and PM genome assemblies were 832.7, 762.6, and 821.6 Mb, and their annotations covered 95.7, 92.4, and 92.7% of the embryophyta core proteins, respectively. We constructed the draft durian pangenome and analyzed comparative genomes with related species in Malvales. Long terminal repeat (LTR) sequences and protein families in durian genomes had slower evolution rates than that in cotton genomes. However, protein families with transcriptional regulation function and protein phosphorylation function involved in abiotic and biotic stress responses appeared to evolve faster in durians. The analyses of phylogenetic relationships, copy number variations (CNVs), and presence/absence variations (PAVs) suggested that the genome evolution of Thai durians was different from that of the Malaysian durian, Musang King (MK). Among the three newly sequenced genomes, the PAV and CNV profiles of disease resistance genes and the expressions of methylesterase inhibitor domain containing genes involved in flowering and fruit maturation in MT were different from those in KD and PM. These genome assemblies and their analyses provide valuable resources to gain a better understanding of the genetic diversity of cultivated durians, which may be useful for the future development of new durian cultivars.

4.
Biology (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979175

RESUMO

Unique and biodiverse, mangrove ecosystems provide humans with benefits and contribute to coastal protection. Rhizophora mucronata, a member of the Rhizophoraceae family, is prevalent in the mangrove forests of Thailand. R. mucronata's population structure and genetic diversity have received scant attention. Here, we sequenced the entire genome of R. mucronata using 10× Genomics technology and obtained an assembly size of 219 Mb with the N50 length of 542,540 bases. Using 2857 single nucleotide polymorphism (SNP) markers, this study investigated the genetic diversity and population structure of 80 R. mucronata accessions obtained from the mangrove forests in Thailand. The genetic diversity of R. mucronata was moderate (I = 0.573, Ho = 0.619, He = 0.391). Two subpopulations were observed and confirmed from both population structure and principal component analysis (PCA). Analysis of molecular variance (AMOVA) showed that there was more variation within populations than between them. Mean pairwise genetic differentiation (FST = 0.09) showed that there was not much genetic difference between populations. Intriguingly, the predominant clustering pattern in the R. mucronata population did not correspond to the Gulf of Thailand and the Andaman Sea, which are separated by the Malay Peninsula. Several factors could have influenced the R. mucronata genetic pattern, such as hybridization and anthropogenic factors. This research will provide important information for the future conservation and management of R. mucronata in Thailand.

5.
Mitochondrial DNA B Resour ; 7(10): 1814-1816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278125

RESUMO

Intsia bijuga (Colebr.) Kuntze. (1891) is a threatened mangrove species, belonging to the Fabaceae family and is native to the western Pacific coast and Southeast Asia. Here, we applied short-read Illumina technology to sequence and assemble its chloroplast genome. The complete chloroplast genome is 158,363 bp in length, composed of one large single-copy (LSC) region of 87,489 bp, one small single-copy (SSC) region of 19,438 bp, and a pair of inverted repeats (IRs) of 25,719 bp. A total of 129 unique genes were annotated, comprising 84 protein-coding genes, eight rRNA genes, and 37 tRNA genes. Our phylogenetic analysis showed the placement of I. bijuga (OL699920.1) with Afzelia species within Fabaceae family.

6.
Mitochondrial DNA B Resour ; 7(5): 769-771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558177

RESUMO

Terrapotamon thungwa is a new species of terrestrial long-legged crab discovered in a karst landscape of southern Thailand. Here, we report the first complete mitochondrial genome of this crab species. The mitochondrial genome size is 16,156 base-pairs (bp), including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA), and two ribosomal RNA (rRNA) genes. The AT and GC content of the mitochondrial genome sequence is 73.2% and 26.8%, respectively. Phylogenetic analysis with 26 crustacean species, based on 13 mitochondrial conserve genes, showed that T. thungwa was closely related to other freshwater crab species in the family Potamidae.

7.
Genomics ; 114(3): 110382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526741

RESUMO

Mangroves are plants that live in tropical and subtropical coastal regions of the world, they are adapted to high salt environments and cyclic tidal flooding. Mangroves play important ecological roles, including acting as breeding grounds for many fish species and to prevent coastal erosion. The genomes of three mangrove species, Bruguiera gymnorhiza, Bruguiera cylindrica, and a hybrid of the two, Bruguiera hainesii were sequenced, assembled and annotated. The two progenitor species, B. gymnorhiza and B. cylindrica, were found to be highly similar to each other and sufficiently similar to B. parviflora to allow it to be used for reference based scaffolding to generate chromosome level scaffolds. The two subgenomes of B. hainesii were independently assembled and scaffolded. Analysis of B. hainesii confirms that it is a hybrid and the hybridisation event was estimated at 2.4 to 3.5 million years ago using a Bayesian Relaxed Molecular Clock approach.


Assuntos
Rhizophoraceae , Animais , Rhizophoraceae/genética , Teorema de Bayes , Melhoramento Vegetal
8.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106563

RESUMO

Mangroves are of great ecological and economical importance, providing shelters for a wide range of species and nursery habitats for commercially important marine species. Ceriops zippeliana (yellow mangrove) belongs to Rhizophoraceae family and is commonly distributed in the tropical and subtropical coastal communities. In this study, we present a high-quality assembly of the C. zippeliana genome. We constructed an initial draft assembly of 240,139,412 bases with an N50 contig length of 564,761 bases using the 10x Genomics linked-read technology. This assembly was further scaffolded with RagTag using a chromosome-scale assembly of a closely related Ceriops species as a reference. The final assembly contained 243,228,612 bases with an N50 scaffold length of 10,559,178 Mb. The size of the final assembly was close to those estimated using DNA flow cytometry (248 Mb) and the k-mer distribution analysis (246 Mb). We predicted a total of 23,474 gene models and 21,724 protein-coding genes in the C. zippeliana genome, of which 16,002 were assigned gene ontology terms. We recovered 97.1% of the highly conserved orthologs based on the Benchmarking Universal Single-Copy Orthologs analysis. The phylogenetic analysis based on single-copy orthologous genes illustrated that C. zippeliana and Ceriops tagal diverged approximately 10.2 million years ago (MYA), and their last common ancestor and Kandelia obovata diverged approximately 29.9 MYA. The high-quality assembly of C. zippeliana presented in this work provides a useful genomic resource for studying mangroves' unique adaptations to stressful intertidal habitats and for developing sustainable mangrove forest restoration and conservation programs.


Assuntos
Rhizophoraceae , Cromossomos , Genoma , Genômica , Filogenia , Rhizophoraceae/genética
9.
Mitochondrial DNA B Resour ; 7(1): 300-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111942

RESUMO

Mictyris thailandensis has been described recently in the family Mictyridae which is found only in the Andaman Sea, west coast of Thailand. In this study, we performed shotgun genome sequencing of a male M. thailandensis using a paired-end (150 bp) sequencing chemistry on MGISEQ-2000RS and report the complete mitochondrial genome of M. thailandensis (15,557 bp). A total of 37 genes have been annotated: 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a control region. Comparative phylogenetic analysis with 29 crustaceans based on 13 conserved genes demonstrated that M. thailandensis is closely related to other soldier crabs in the family Mictyridae. The mitogenome of M. thailandensis presented here provides useful genetic information to help understand the evolutionary relationships among the Mictyridae family members.

10.
Mol Ecol Resour ; 22(5): 1939-1953, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35060320

RESUMO

Mangrove forest ecosystems support a diverse flora and fauna of marine and terrestrial species and have important direct and indirect economic, ecological and social values to mankind. Yellow mangrove (Bruguiera parviflora) belongs to the Rhizophoraceae family and is widely distributed in the intertidal zones along sheltered coastal areas in tropical latitudes. Here, we present a high-quality, chromosome-level assembly of the B. parviflora genome. We employed the 10x Genomics linked-read technology to obtain a preliminary assembly, which was subsequently scaffolded using the long-range chromatin contact mapping technique (HiC) to obtain a final assembly containing 213,026,782 bases in 10,045 scaffolds with an N50 length of 10,906,948 bases. Our gene prediction recovered 96.5% of the highly conserved orthologues in the Embryophyta lineage based on the Benchmarking Universal Single-Copy Orthologues (BUSCO) analysis. We analysed the transversion rate at fourfold-degenerate sites from orthologous gene pairs and discovered evidence supporting a recent whole-genome duplication event in B. parviflora and other Rhizophoreae members. Comparative studies based on single-copy orthologous genes indicated that B. parviflora and Bruguiera gymnorrhiza diverged approximately 24.1 million years ago. The population structure analysis revealed that 63 B. parviflora accessions from different geographical regions in Thailand were an admixture of two subpopulations. The examination of alternative splicing events in B. parviflora showed that the most prevalent splicing mechanism was intron retention. This high-quality genome assembly together with the genetic diversity information obtained from the germplasm provide useful genomic resources for future studies on comparative phylogenetics and evolution of adaptive traits in mangrove species.


Assuntos
Rhizophoraceae , Cromossomos , Ecossistema , Duplicação Gênica , Genoma , Rhizophoraceae/genética
11.
Genomics ; 113(4): 2717-2729, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089786

RESUMO

Corals live with complex assemblages of microbes including bacteria, the dinoflagellate Symbiodiniaceae, fungi and viruses in a coral holobiont. These coral-associated microorganisms play an important role in their host fitness and survival. Here, we investigated the structure and diversity of algal and bacterial communities associated with five Indo-Pacific coral species, using full-length 16S rRNA and internal transcribed spacer sequences. While the dinoflagellate communities associated with Poriteslutea were dominated with Symbiodiniaceae genus Cladocopium, the other four coral hosts were associated mainly with members of the Durusdinium genus, suggesting that host species was one of the underlying factors influencing the structure and composition of dinoflagellate communities associated with corals in the Gulf of Thailand. Alphaproteobacteria dominated the microbiomes of Pocillopora spp. while Pavonafrondifera and P. lutea were associated primarily with Gammaproteobacteria. Finally, we demonstrated a superior performance of full-length 16S rRNA sequences in achieving species-resolution taxonomic classification of coral-associated microbiota.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Bactérias/genética , Dinoflagellida/genética , Genes de RNAr , RNA Ribossômico 16S/genética , Tailândia
12.
Genomics ; 113(4): 2221-2228, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022344

RESUMO

Centella asiatica is a herbaceous, perennial species indigenous to India and Southeast Asia. C. asiatica possesses several medicinal properties: anti-aging, anti-inflammatory, wound healing and memory enhancing. The lack of available genomics resources significantly impedes the improvement of C. asiatica varieties through molecular breeding. Here, we combined the 10× Genomics linked-read technology and the long-range HiC technique to obtain the genome assembly. The final assembly contained nine pseudomolecules, corresponding to the haploid chromosome number in C. asiatica. These nine chromosomes covered 402,536,584 bases or 93.6% of the 430-Mb assembly. Comparative genomics analyses based on single-copy orthologous genes showed that C. asiatica and the common ancestor of Coriandrum sativum (coriander) and Daucus carota (carrot) diverged about 48 million years ago. This assembly provides a valuable reference genome for future molecular studies, varietal development through marker-assisted breeding and comparative genomics studies in C. asiatica.


Assuntos
Centella , Centella/genética , Cromossomos , Genoma , Genômica/métodos , Melhoramento Vegetal
13.
Mitochondrial DNA B Resour ; 6(2): 634-635, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33644395

RESUMO

Indochinamon bhumibol has been found as the biggest freshwater crab in Thailand. In this study, we report the first complete sequence of mitochondrial genome from I. bhumibol encoding 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs. The nucleotide composition of I. bhumibol mitogenome showed a strong AT bias (70.4%) with a low GC content (29.6%). Comparative phylogenetic analysis with 28 crustaceans based on nine conserved genes demonstrated that I. bhumibol was closely related to members of the Potamidae family.

14.
Mol Ecol Resour ; 21(1): 212-225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841550

RESUMO

Luffa spp. (sponge gourd or ridge gourd) is an economically important vegetable crop widely cultivated in China, India and Southeast Asia. Here, we employed PacBio long-read single-molecule real-time (SMRT) sequencing to perform de novo genome assemblies of two commonly cultivated Luffa species, L. acutangula and L. cylindrica. We obtained preliminary draft genomes of 734.6 Mb and 689.8 Mb with scaffold N50 of 786,130 and 578,616 bases for L. acutangula and L. cylindrica, respectively. We also applied long-range Chicago and HiC techniques to obtain the first chromosome-scale whole-genome assembly of L. acutangula. The final assembly contained 13 pseudomolecules, corresponding to the haploid chromosome number in Luffa spp. (1n = 13, 2n = 26). The sizes of the assembled Luffa genomes are approximately twice as large as the genome assemblies of related Cucurbitaceae. A large proportion of L. acutangula (62.17%; 456.69 Mb) and L. cylindrica (56.78%; 391.65 Mb) genome assemblies contained repetitive elements. Phylogenetic analyses revealed that the substantial accumulation of transposable elements likely contributed to the expansion of the Luffa genomes. We also investigated alternative splicing events in Luffa using full-length transcript sequences obtained from PacBio Isoform Sequencing (Iso-seq). While the predominant form of alternative splicing in most plant species examined was intron retention, alternative 3' acceptor site selection appeared to be a major event observed in Luffa. High-quality genome assemblies for L. acutangula and L. cylindrica reported here provide valuable resources for Luffa breeding and future genetics and comparative genomics studies in Cucurbitaceae.


Assuntos
Elementos de DNA Transponíveis , Genoma de Planta , Luffa , Tamanho do Genoma , Luffa/genética , Filogenia , Melhoramento Vegetal
15.
Mol Ecol Resour ; 21(1): 238-250, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32794377

RESUMO

Black gram (Vigna mungo) is an important short duration grain legume crop. Black gram seeds provide an inexpensive source of dietary protein. Here, we applied the 10X Genomics linked-read technology to obtain a de novo whole genome assembly of V. mungo cultivated variety Chai Nat 80 (CN80). The preliminary assembly contained 12,228 contigs and had an N50 length of 5.2 Mb. Subsequent scaffolding using the long-range Chicago and HiC techniques yielded the first high-quality, chromosome-level assembly of 499 Mb comprising 11 pseudomolecules. Comparative genomics analyses based on sequence information from single-copy orthologous genes revealed that black gram and mungbean (Vigna radiata) diverged about 2.7 million years ago . The transversion rate (4DTv) analysis in V. mungo revealed no evidence supporting a recent genome-wide duplication event observed in the tetraploid créole bean (Vigna reflexo-pilosa). The proportion of repetitive elements in the black gram genome is slightly lower than the numbers reported for related Vigna species. The majority of long terminal repeat retrotransposons appeared to integrate into the genome within the last five million years. We also examined alternative splicing events in V. mungo using full-length transcript sequences. While intron retention was the most prevalent mode of alternative splicing in several plant species, alternative 3' acceptor site selection represented the majority of events in black gram. Our high-quality genome assembly along with the genomic variation information from the germplasm provides valuable resources for accelerating the development of elite varieties through marker-assisted breeding and for future comparative genomics and phylogenetic studies in legume species.


Assuntos
Genoma de Planta , Vigna , Cromossomos de Plantas , Produtos Agrícolas/genética , Filogenia , Melhoramento Vegetal , Retroelementos , Vigna/genética
16.
Mitochondrial DNA B Resour ; 5(3): 3208-3209, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-33458114

RESUMO

Based on PacBio de novo assembly, we report the first complete mitochondrial genome of Luffa acutangula (460,333 bp) containing nine large chloroplast-derived sequences (1.9-17.3 kb) across the mitogenome. The base composition of the mitogenome in descending order is A: 28.02%, C: 22.04%, G: 21.83% and T: 28.10%, and the G + C content is 43.87%. There are 63 mitochondrial genes including 40 protein-coding genes, 3 rRNA genes and 20 tRNA genes. Additionally, a total of 288 repeats ranging from 31 to 5,301 bp were identified, accounting for 5.7% of the mitogenome. Two large direct repeats (5,301 and 405 bp) within the mitogenome were found for the formation of four subgenomic molecules. A phylogenetic analysis showed that L. acutangula was closely related to other species in Cucurbiaceae. This mitogenome provides useful genetic information for evolutionary studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA