Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biomed Pharmacother ; 167: 115474, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741249

RESUMO

BACKGROUND: Omega 3 fatty acids, such as docosahexaenoic acid (DHA) have been widely consumed as supplements to control chronic inflammation. Nanocapsules containing DHA (MLNC-DHA-a1) were developed and showed excellent stability. Thus, our objective was to evaluate the effect of MLNC-DHA-a1 nanocapsules on biomarkers of chronic inflammation. METHODS: Cells viability was determined by flow cytometry. The uptake of MLNC-DHA-a1 nanocapsules by macrophages and their polarization were determined. In vivo, LDLr(-,-) mice were fed a Western diet to promote chronic inflammation and were treated with MLNC-DHA-a1 nanocapsules, intravenously injected via the caudal vein once a week for 8 weeks. RESULTS: MLNC-DHA-a1 nanocapsules decreased the concentration of TNFα (p = 0.02) in RAW 264.7 cells compared to the non-treated group (NT), with no changes in IL-10 (p = 0.29). The nanocapsules also exhibited an increase in the M2 (F4/80+ CD206) phenotype (p < 0.01) in BMDM cells. In vivo, no difference in body weight was observed among the groups, suggesting that the intervention was well tolerated. However, compared to the CONT group, MLNC-DHA-a1 nanocapsules led to an increase in IL-6 (90.45 ×13.31 pg/mL), IL-1ß (2.76 ×1.34 pg/mL) and IL-10 (149.88 ×2.51 pg/mL) levels in plasma. CONCLUSION: MLNC-DHA-a1 nanocapsules showed the potential to promote in vitro macrophage polarization and were well-tolerated in vivo. However, they also increased systemic pro-inflammatory cytokines. Therefore, considering that this immune response presents a limitation for clinical trials, further studies are needed to identify the specific compound in MLNC-DHA-a1 that triggered the immune response. Addressing this issue is essential, as MLNC-DHA-a1 tissue target nanocapsules could contribute to reducing chronic inflammation.

2.
Physiol Rep ; 11(3): e15598, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750199

RESUMO

Hypertensive individuals taking anti-hypertensive drugs from renin-angiotensin system inhibitors may exhibit a more severe evolution of the disease when contracting the SARS-CoV-2 virus (COVID-19 disease) due to potential increases in ACE2 expression. The study investigated ACE1 and ACE2 axes and hydroxychloroquine in the lungs and adipose tissue of male and female normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). SHRs were treated with losartan (10 mg/kg/day) or captopril (10 mg/kg/day) for 14 days or 7 days with hydroxychloroquine (200 mg/kg/day) in drinking water. WKY rats were also treated for 7 days with hydroxychloroquine. Blood pressure (BP), protein, and mRNA expression of ACE1 and ACE2 were analyzed in serum, adipose, and lung tissues. Losartan and captopril reduced BP in both sexes in SHR, whereas hydroxychloroquine increased BP in WKY rats. Losartan reduced ACE2 in serum and lungs in both sexes and in adipose tissue of male SHRs. Captopril decreased ACE2 protein in the lung of females and in adipose tissue in both sexes of SHRs. Hydroxychloroquine decreased ACE1 and ACE2 proteins in the lungs in both sexes and adipose tissue in male SHRs. In female WKY rats, ACE2 protein was lower only in the lungs and adipose tissue. Losartan effectively inhibited ACE2 in male and captopril in female SHRs. Hydroxychloroquine inhibited ACE2 in male SHRs and female WKY rats. These results further our understanding of the ACE2 mechanism in patients under renin-angiotensin anti-hypertensive therapy and in many trials using hydroxychloroquine for COVID-19 treatment and potential sex differences in response to drug treatment.


Assuntos
COVID-19 , Hipertensão , Animais , Feminino , Humanos , Masculino , Ratos , Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2 , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Captopril/uso terapêutico , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Losartan/farmacologia , Pulmão/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , SARS-CoV-2 , Peptidil Dipeptidase A/metabolismo
3.
Eur J Pharm Biopharm ; 181: 49-59, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334840

RESUMO

Annexin A1 (AnxA1), a 37KDa protein, is secreted by inflammatory and epithelial cells and displays anti-inflammatory and wound healing activities in intestinal bowel diseases. Herein, we aimed to functionalize recombinant AnxA1 (AnxA1) on multi-wall lipid core nanocapsules (MLNC) and investigate its effectiveness on experimental colitis. MLNC were prepared by covering lipid core nanocapsules (LNC) with chitosan, which coordinates metals to specific protein chemisorption sites. Therefore, MLNC were linked to Zn2+ and AnxA1 was added to form MLNC-AnxA1. LNC, MLNC and MLNC-AnxA1 presented average size of 129, 152 and 163 nm, respectively, and similar polydispersity indexes (0.xx); incorporation of chitosan inverted the negative potential zeta; the coordination efficiency of AnxA1 was 92.22 %, and transmission electron microscope photomicrograph showed MLNC-AnxA1 had a spherical shape. The effectiveness of MLNC-AnxA1 was measured in Dextran Sulfate Sodium (DSS)-induced colitis in male C57BL/6 mice. DSS (2 % solution) was administered from days 1-6; saline, LNC, MLNC, MLNC-AnxA1 or AnxA1 were administered, once a day, by oral or intraperitoneal (i.p.) routes, from days 6-9. Clinical parameters of the disease were measured from day 0-10 and gut tissues were collected for histopathology, immunohistochemistry and flow cytometry analyses. Only i.p. treatment with MLNC-AnxA1 reduced weight loss, diarrhea and disease activity index, and prevented loss of colonic structure integrity; induced the switch of macrophages into M2 phenotype in the lamina propria; recovered the colonic histoarchitecture by decreasing dysplasia of crypts, inflammation and ulcerations; restored the expression of claudin-1 Zonna-occludens-1 tight junctions in the inflamed gut; and induced stem cell proliferation in intestinal crypts. Associated, data highlight the functionalization of MLNC with AnxA1 as a tool to improve the local actions of such protein in the inflamed gut by inducing resolution of inflammation and tissue repair.


Assuntos
Anexina A1 , Quitosana , Nanocápsulas , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lipídeos
4.
J Mater Chem B ; 10(2): 247-261, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34878486

RESUMO

The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.


Assuntos
Corantes Fluorescentes/química , Pontos Quânticos/química , Animais , Európio/química , Európio/metabolismo , Európio/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Manganês/química , Manganês/metabolismo , Manganês/toxicidade , Camundongos , Microscopia de Fluorescência , Pontos Quânticos/metabolismo , Pontos Quânticos/toxicidade , Células RAW 264.7 , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Compostos de Selênio/toxicidade , Sulfetos/química , Sulfetos/metabolismo , Sulfetos/toxicidade , Compostos de Zinco/química , Compostos de Zinco/metabolismo , Compostos de Zinco/toxicidade
5.
J Mater Chem B, v. 10, n. 2, p. 247-261, 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4027

RESUMO

The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle–cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.

6.
Front Med (Lausanne) ; 8: 652137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959626

RESUMO

Atherosclerosis can be originated from the accumulation of modified cholesterol-rich lipoproteins in the arterial wall. The electronegative LDL, LDL(-), plays an important role in the pathogenesis of atherosclerosis once this cholesterol-rich lipoprotein can be internalized by macrophages, contributing to the formation of foam cells, and provoking an immune-inflammatory response. Herein, we engineered a nanoformulation containing highly pure surface-functionalized nanocapsules using a single-chain fragment variable (scFv) reactive to LDL(-) as a ligand and assessed whether it can affect the LDL(-) uptake by primary macrophages and the progression of atherosclerotic lesions in Ldlr -/- mice. The engineered and optimized scFv-anti-LDL(-)-MCMN-Zn nanoformulation is internalized by human and murine macrophages in vitro by different endocytosis mechanisms. Moreover, macrophages exhibited lower LDL(-) uptake and reduced mRNA and protein levels of IL1B and MCP1 induced by LDL(-) when treated with this new nanoformulation. In a mouse model of atherosclerosis employing Ldlr -/- mice, intravenous administration of scFv-anti-LDL(-)-MCMN-Zn nanoformulation inhibited atherosclerosis progression without affecting vascular permeability or inducing leukocytes-endothelium interactions. Together, these findings suggest that a scFv-anti-LDL(-)-MCMN-Zn nanoformulation holds promise to be used in future preventive and therapeutic strategies for atherosclerosis.

7.
Nanomedicine (Lond) ; 14(11): 1429-1442, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31169450

RESUMO

Aim: Poly(ε-caprolactone) lipid-core nanocapsules (LNCs) are efficient drug carriers and drug-free LNCs display therapeutic effects, inhibiting tumor growth and neutrophil activities. Herein, we investigated the direct actions of LNCs on human immune cells, to guide their therapeutic application. Materials & methods: LNC's uptake, cytokine release, cell migration, proliferation and intracellular pathways under inflammatory stimulation were investigated. Results & conclusion: LNCs quickly penetrated leukocytes without cytotoxicity; inhibited mitogen-induced lymphocyte proliferation, cytokine release and leukocyte migration under inflammatory stimulation, which were associated with inhibition of the MAP kinase pathway and intracellular calcium influx. Hence, we showed LNCs as a down-regulatory agent on immune cells, suggesting that either the particles themselves or their application as a drug carrier can halt non-desired inflammatory processes.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Lipídeos/química , Poliésteres/química , Células Sanguíneas/efeitos dos fármacos , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Hexoses/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Nanocápsulas/química , Transdução de Sinais
8.
Int J Nanomedicine ; 10: 4731-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251595

RESUMO

Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM(-1)s(-1) in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Cátions , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
9.
Toxicol Sci ; 142(2): 497-507, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25260831

RESUMO

Gold nanoparticle (AuNP) bioconjugates have been used as therapeutic and diagnostic tools; however, in vivo biocompatibility and cytotoxicity continue to be two fundamental issues. The effect of AuNPs (20 nm) conjugated with antibody [immunoglobulin G (IgG)], albumin, protein A, PEG4000, and citrate (cit) were evaluated in vitro using primary human cells of the vascular system. AuNP bioconjugates did not cause lysis of human erythrocytes, apoptosis or necrosis of human leukocytes, and endothelial cells in vitro, although AuNPs had been internalized and detected in the cytoplasm. Moreover, the influence of AuNPs on rheological parameters, blood and vessel wall characteristics was investigated in vivo by intravital microscopy assay using male Wistar rats mesentery microcirculation as model. Intravenous injection of AuNP-IgG or cit-AuNP did not cause hemorrhage, hemolysis or thrombus formation, instead suppressed the leukocyte adhesion to postcapillary vessel walls, an early stage of an inflammatory process. Furthermore, AuNP-IgG abrogated the expression of platelet-endothelial cell adhesion molecule-1, chemotaxis, and oxidative burst activation on neutrophils after leukotriene B4 stimulation, a membrane receptor-dependent stimulus, thus confirming their anti-inflammatory effects in vitro. The expression of oxidative burst activation was also suppressed after stimulating AuNP-IgG-treated neutrophils with lipid-soluble phorbol myristate acetate (PMA), confirming the direct intracellular action of AuNP-IgG on the inflammatory process in vitro. Our in vitro and in vivo experimental approaches highlighted the great potentiality of AuNP bioconjugates for therapeutic and diagnostic applications by parenteral routes.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Materiais Biocompatíveis/toxicidade , Endotélio Vascular/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Endotélio Vascular/patologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/patologia , Ouro/química , Ouro/farmacologia , Hemólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Nanopartículas Metálicas/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Tamanho da Partícula , Ratos Wistar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA