Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Probl Cardiol ; 48(7): 101664, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36841315

RESUMO

Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardio protective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Insuficiência Cardíaca , Humanos , Doenças Cardiovasculares/epidemiologia , Frutas , Anti-Inflamatórios
2.
Curr Probl Cardiol ; 48(5): 101599, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681209

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death around the world, a trend that will progressively grow over the next decade. Recently, with the advancement of nanotechnology, innovative nanoparticles (NPs) have been efficiently utilized in disease diagnosis and theranostic applications. In this review, we highlighted the benchmark summary of the recently synthesized NPs that are handy for imaging, diagnosis, and treatment of CVDs. NPs are the carrier of drug-delivery payloads actively reaching more areas of the heart and arteries, allowing them novel therapeutic agents for CVDs. Herein, due to the limited availability of literature, we only focused on NPs mechanism in the cardiovascular system and various treatment-based approaches that opens a new window for future research and versatile approach in the field of medical and clinical applications. Moreover, current challenges and limitations for the detection of CVDs has also discussed.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Humanos , Nanomedicina/métodos , Medicina de Precisão , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/tratamento farmacológico , Nanopartículas/uso terapêutico , Diagnóstico por Imagem
3.
Front Oncol ; 11: 618839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055597

RESUMO

Vasculogenic mimicry (VM), a micro vessel-like structure formed by the cancer cells, plays a pivotal role in cancer malignancy and progression. Interleukin-1 beta (IL-1ß) is an active pro-inflammatory cytokine and elevated in many tumor types, including breast cancer. However, the effect of IL-1ß on the VM of breast cancer has not been clearly elucidated. In this study, breast cancer cells (MCF-7 and MDA-MB-231) were used to study the effect of IL-1ß on the changes that can promote VM. The evidence for VM stimulated by IL-1ß was acquired by analyzing the expression of VM-associated biomarkers (VE-cadherin, VEGFR-1, MMP-9, MMP-2, c-Fos, and c-Jun) via western blot, immunofluorescent staining, and Immunohistochemistry (IHC). Additionally, morphological evidence was collected via Matrigel-based cord formation assay under normoxic/hypoxic conditions and microvessel examination through Hematoxylin and Eosin staining (H&E). Furthermore, the STRING and Gene Ontology database was also used to analyze the VM-associated interacting molecules stimulated by IL-ß. The results showed that the expression of VM biomarkers was increased in both MCF-7 and MDA-MB-231 cells after IL-1ß treatment. The increase in VM response was observed in IL-1ß treated cells under both normoxia and hypoxia. IL-1ß also increased the activation of transcription factor AP-1 complex (c-Fos/c-Jun). The bioinformatics data indicated that p38/MAPK and PI3K/Akt signaling pathways were involved in the IL-1ß stimulation. It was further confirmed by the downregulated expression of VM biomarkers and reduced formation of the intersections upon the addition of the signaling pathway inhibitors. The study suggests that IL-1ß stimulates the VM and its associated events in breast cancer cells via p38/MAPK and PI3K/Akt signaling pathways. Aiming the VM-associated molecular targets promoted by IL-1ß may offer a novel anti-angiogenic therapeutic strategy to control the aggressiveness of breast cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA