Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eng Life Sci ; 23(9): e2300204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664010

RESUMO

In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale.

2.
Bioengineering (Basel) ; 9(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36550968

RESUMO

In recent years, the bioprocessing industry has experienced significant growth and is increasingly emerging as an important economic sector. Here, efficient process management and constant control of cellular growth are essential. Good product quality and yield can only be guaranteed with high cell density and high viability. Whereas the on-line measurement of physical and chemical process parameters has been common practice for many years, the on-line determination of viability remains a challenge and few commercial on-line measurement methods have been developed to date for determining viability in industrial bioprocesses. Thus, numerous studies have recently been conducted to develop sensors for on-line viability estimation, especially in the field of optical spectroscopic sensors, which will be the focus of this review. Spectroscopic sensors are versatile, on-line and mostly non-invasive. Especially in combination with bioinformatic data analysis, they offer great potential for industrial application. Known as soft sensors, they usually enable simultaneous estimation of multiple biological variables besides viability to be obtained from the same set of measurement data. However, the majority of the presented sensors are still in the research stage, and only a few are already commercially available.

3.
J Tissue Eng Regen Med ; 16(11): 977-986, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35962761

RESUMO

Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.


Assuntos
Gelatina , Hidrogéis , Hidrogéis/farmacologia , Oxigênio , Técnicas de Cultura de Células em Três Dimensões , Metacrilatos , Engenharia Tecidual/métodos
4.
Eng Life Sci ; 22(6): 440-452, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35663480

RESUMO

Integrating optical sensors and 3D-printed optics into single-use (SU) cultivation vessels for customized, tailor-made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space-saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels. This study examines how optical prisms can be 3D-printed with a 3D-inkjet printer, modified and then evaluated in a custom made optical bench. The prisms are coated or bonded with thin cover glasses. For the examination of reflectance performance and conformity prisms are compared on the basis of measured characteristics of a conventional glass prism. In addition, the most efficient and reproducible prism geometry and modification technique is applied to a customized 3D-printed cultivation vessel. The vessel is evaluated on a commercial sensor-platform, a shake flask reader (SFR) vario, to investigate its sensing-characteristics while monitoring scattered light with the turbidity standard formazine and a cell suspension of Saccharomyces cerevisiae as model organism. It is demonstrated that 3D-printed prisms can be used in combination with commercial scattered light sensor-platforms to determine OD of a microbial culture and that a 3D-printed unibody design with integrated optics in a cultivation vessel is feasible. In the range of OD600 0-1.16 rel.AU a linear correlation between sensor amplitude and offline determined OD can be achieved. Thus, enabling for the first time a measurement of low cell densities with the SFR vario platform. Moreover, sensitivity is also at least three times higher compared to the commonly used method.

5.
Eng Life Sci ; 22(3-4): 299-307, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382541

RESUMO

Bacillus spp. endospores are important dormant cell forms and are distributed widely in environmental samples. While these endospores can have important industrial value (e.g. use in animal feed as probiotics), they can also be pathogenic for humans and animals, emphasizing the need for effective endospore detection. Standard spore detection by colony forming units (CFU) is time-consuming, elaborate and prone to error. Manual spore detection by spore count in cell counting chambers via phase-contrast microscopy is less time-consuming. However, it requires a trained person to conduct. Thus, the development of a facilitated spore detection tool is necessary. This work presents two alternative quantification methods: first, a colorimetric assay for detecting the biomarker dipicolinic acid (DPA) adapted to modern needs and applied for Bacillus spp. and second, a model-based automated spore detection algorithm for spore count in phase-contrast microscopic pictures. This automated spore count tool advances manual spore detection in cell counting chambers, and does not require human overview after sample preparation. In conclusion, this developed model detected various Bacillus spp. endospores with a correctness of 85-89%, and allows an automation and time-saving of Bacillus endospore detection. In the laboratory routine, endospore detection and counting was achieved within 5-10 min, compared to up to 48 h with conventional methods. The DPA-assay on the other hand enabled very accurate spore detection by simple colorimetric measurement and can thus be applied as a reference method.

6.
Sensors (Basel) ; 18(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513956

RESUMO

Buried explosive material, e.g., landmines, represent a severe issue for human safety all over the world. Most explosives consist of environmentally hazardous chemicals like 2,4,6-trinitrotoluene (TNT), carcinogenic 2,4-dinitrotoluene (2,4-DNT) and related compounds. Vapors leaking from buried landmines offer a detection marker for landmines, presenting an option to detect landmines without relying on metal detection. 2,4-Dinitrotoluene (DNT), an impurity and byproduct of common TNT synthesis, is a feasible detection marker since it is extremely volatile. We report on the construction of a wireless, handy and cost effective 2,4-dinitrotoluene biosensor combining recombinant bioluminescent bacterial cells and a compact, portable optical detection device. This biosensor could serve as a potential alternative to the current detection technique. The influence of temperature, oxygen and different immobilization procedures on bioluminescence were tested. Oxygen penetration depth in agarose gels was investigated, and showed that aeration with molecular oxygen is necessary to maintain bioluminescence activity at higher cell densities. Bioluminescence was low even at high cell densities and 2,4-DNT concentrations, hence optimization of different prototypes was carried out regarding radiation surface of the gels used for immobilization. These findings were applied to sensor construction, and 50 ppb gaseous 2,4-DNT was successfully detected.


Assuntos
Técnicas Biossensoriais/instrumentação , Dinitrobenzenos/isolamento & purificação , Substâncias Explosivas/isolamento & purificação , Tecnologia sem Fio/instrumentação , Dinitrobenzenos/toxicidade , Substâncias Explosivas/química , Gases/síntese química , Gases/isolamento & purificação , Humanos , Oxigênio/química
7.
Appl Microbiol Biotechnol ; 100(9): 4147-59, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26940052

RESUMO

The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.


Assuntos
Técnicas Citológicas/métodos , Escherichia coli/química , Corpos de Inclusão/química , Proteínas Recombinantes/análise , Reatores Biológicos/microbiologia , Técnicas de Química Analítica , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Luz , Reprodutibilidade dos Testes
8.
Sensors (Basel) ; 14(9): 17390-405, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232914

RESUMO

In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.


Assuntos
Análise da Demanda Biológica de Oxigênio/instrumentação , Contagem de Células/instrumentação , Proliferação de Células/fisiologia , Densitometria/instrumentação , Fotometria/instrumentação , Refratometria/instrumentação , Animais , Células CHO , Tamanho Celular , Cricetulus , Desenho de Equipamento , Análise de Falha de Equipamento , Sistemas On-Line , Integração de Sistemas
9.
Clin Pharmacokinet ; 52(9): 727-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23703577

RESUMO

Ginkgo biloba is among the most favourite and best explored herbal drugs. Standardized extracts of Ginkgo biloba represent the only herbal alternative to synthetic antidementia drugs in the therapy of cognitive decline and Alzheimer's diseases. The clinical efficiency of such standardized Ginkgo biloba extracts (GBE) is still controversial, but authors of numerous international clinical studies recommended the use of GBE in the described therapies.Extracts of Ginkgo biloba are a mixture of substances with a wide variety of physical and chemical properties and activities. Numerous pharmacological investigations lead to the conclusion that the terpene trilactones (TTL) and the flavonoids of GBE are responsible for the main pharmacological effects of the extract in the therapy of cognitive decline. Therefore, the quality of GBE products must be oriented on a defined quantity of TTL and flavonoids. Furthermore, because of their toxic potential the amount of ginkgolic acid should be less than 5 ppm.However, data on pharmacokinetics and bioavailability, especially related to the central nervous system (CNS), which is the target tissue, are relatively rare. A few investigations characterize the TTL and flavonoids of Ginkgo biloba pharmacokinetically in plasma and in the brain. Recent investigations show that significant levels of TTL and Ginkgo biloba flavonoids cross the blood-brain barrier and enter the CNS of rats after oral application of GBE. Knowledge about the pharmacokinetic behaviour of these substances is necessary to discuss the pharmacological results on a more realistic basis.


Assuntos
Ginkgo biloba , Extratos Vegetais/farmacologia , Animais , Flavonoides/farmacologia , Humanos , Legislação de Medicamentos , Compostos Fitoquímicos/farmacologia , Plantas Medicinais , Piridoxina/análogos & derivados , Piridoxina/farmacologia , Salicilatos/farmacologia , Terpenos/farmacologia
10.
Planta Med ; 77(3): 259-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20814851

RESUMO

Several studies indicate that the terpene trilactones (TTL) of EGb 761® are responsible for most of its pharmacological action in the brain . Therefore, we investigated the ability of the TTL to cross the blood brain barrier in rats after a single oral administration (600 mg/kg) of EGb 761® and compared it with the plasma levels. In addition, we checked the pharmacokinetic characteristics of an application of EGb 761® against a similar amount of pure substances. For this purpose, we developed a sensitive HPLC-(APCI)-MS method for the determination of the Ginkgo biloba TTL (ginkgolide A [GA], B [GB], C [GC] and bilobalide [Bb]) in plasma as well as in brain tissue. The following animal study shows that the oral application of 600 mg/kg EGb 761® results in significant GA, GB, and Bb concentrations in plasma as well as in the CNS of the rodents, while the GC concentration was below the detection limit of the analytical method in both matrices. GA, GB, and Bb brain concentrations showed a rapid increase up to 55 ng/g, 40 ng/g, and 98 ng/g with no difference of the characteristic after extract or pure substance application. Regarding the plasma levels, significant higher C(max) and AUC values were detected after application of the extract EGb 761®. These results allow for the first time a discussion of pharmacological effects with the knowledge of the pharmacokinetic behavior of the TTL in target tissues.


Assuntos
Barreira Hematoencefálica/metabolismo , Sangue/metabolismo , Encéfalo/metabolismo , Ginkgo biloba/química , Ginkgolídeos/farmacocinética , Lactonas/metabolismo , Extratos Vegetais/farmacocinética , Animais , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Lactonas/sangue , Masculino , Espectrometria de Massas , Ratos
12.
J Pharm Pharm Sci ; 13(4): 607-14, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21486534

RESUMO

PURPOSE. Bilobalide is an active constituent of Ginkgo biloba and has shown neuroprotective effects in mice with cerebral ischemia. In the present study, we investigated brain permeability of bilobalide (i) in healthy mice and (ii) in mice before or after stroke. METHODS. We have used in vivo microdialysis and LC-MS to estimate extracellular levels of bilobalide. 10 mg/kg of bilobalide was given by i.p. injection to control mice, and 60 minutes before and after middle cerebral artery occlusion (MCAO). RESULTS. Bilobalide was already detectable in brain striatal microdialysates 10 min after i.p. administration and reached maximum levels (19 ng/mL, corresponding to 0.92 µM) after 40 min. Maximum plasma bilobalide levels were 5.9 µM. After an ischemic insult, the drug could be dialysed with similar efficiency as in control mice indicating slow elimination from the ischemic brain. When the drug was given after MCAO, availability in the brain was low, but measurable, at approx. 10% of control values. CONCLUSIONS. Our data demonstrate that bilobalide easily crosses the blood brain barrier and reaches extracellular concentrations in the brain that allow efficient interaction with target molecules such as neurotransmitter receptors. Availability of the drug in ischemic tissue is high when given before ischemia, but severely limited after MCAO.


Assuntos
Encéfalo/metabolismo , Ciclopentanos/farmacocinética , Furanos/farmacocinética , Ginkgolídeos/farmacocinética , Infarto da Artéria Cerebral Média/patologia , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Feminino , Ginkgo biloba/química , Injeções Intraperitoneais , Espectrometria de Massas/métodos , Camundongos , Microdiálise/métodos , Permeabilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA