Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(1): 43-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021347

RESUMO

The COVID-19 pandemic has caused adverse health (severe respiratory, enteric and systemic infections) and environmental impacts that have threatened public health and the economy worldwide. Drug repurposing and small molecule multi-target directed herbal medicine therapeutic approaches are the most appropriate exploration strategies for SARS-CoV-2 drug discovery. This study identified potential multi-target-directed Parkia bioactive entities against SARS-CoV-2 receptors (S-protein, ACE2, TMPRSS2, RBD/ACE2, RdRp, MPro, and PLPro) using ADMET, drug-likeness, molecular docking (AutoDock, FireDock and HDOCK), molecular dynamics simulation and MM-PBSA tools. One thousand Parkia bioactive entities were screened out by virtual screening and forty-five bioactive phytomolecules were selected based on favorable binding affinity and acceptable pharmacokinetic and pharmacodynamics properties. The binding affinity values of Parkia phyto-ligands (AutoDock: -6.00--10.40 kcal/mol; FireDock: -31.00--62.02 kcal/mol; and HDOCK: -150.0--294.93 kcal/mol) were observed to be higher than the reference antiviral drugs (AutoDock: -5.90--9.10 kcal/mol; FireDock: -35.64--59.35 kcal/mol; and HDOCK: -132.82--211.87 kcal/mol), suggesting a potent modulatory action of Parkia bioactive entities against the SARS-CoV-2. Didymin, rutin, epigallocatechin gallate, epicatechin-3-0-gallate, hyperin, ursolic acid, lupeol, stigmasta-5,24(28)-diene-3-ol, ellagic acid, apigenin, stigmasterol, and campesterol strongly bound with the multiple targets of the SARS-CoV-2 receptors, inhibiting viral entry, attachment, binding, replication, transcription, maturation, packaging and spread. Furthermore, ACE2, TMPRSS2, and MPro receptors possess significant molecular dynamic properties, including stability, compactness, flexibility and total binding energy. Residues GLU-589, and LEU-95 of ACE2, GLN-350, HIS-186, and ASP-257 of TMPRSS2, and GLU-14, MET-49, and GLN-189 of MPro receptors contributed to the formation of hydrogen bonds and binding interactions, playing vital roles in inhibiting the activity of the receptors. Promising results were achieved by developing multi-targeted antiviral Parkia bioactive entities as lead and prospective candidates under a small molecule strategy against SARS-CoV-2 pathogenesis. The antiviral activity of Parkia bioactive entities needs to be further validated by pre-clinical and clinical trials.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Enzima de Conversão de Angiotensina 2 , Reposicionamento de Medicamentos , Pandemias , Antivirais/farmacologia
2.
Environ Sci Pollut Res Int ; 30(17): 51143-51169, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808033

RESUMO

Alzheimer's disease (AD) is one of the neurodegenerative diseases, manifesting dementia, spatial disorientation, language, cognitive, and functional impairment, mainly affects the elderly population with a growing concern about the financial burden on society. Repurposing can improve the traditional progress of drug design applications and could speed up the identification of innovative remedies for AD. The pursuit of potent anti-BACE-1 drugs for AD treatment has become a pot boiler topic in the recent past and to instigate the design of novel improved inhibitors from the bee products. Drug-likeness characteristics (ADMET: absorption, distribution, metabolism, excretion, and toxicity), docking (AutoDock Vina), simulation (GROMACS), and free energy interaction (MM-PBSA, molecular mechanics Poisson-Boltzmann surface area) analyses were performed to identify the lead candidates from the bee products (500 bioactives from the honey, royal jelly, propolis, bee bread, bee wax, and bee venom) for Alzheimer's disease as novel inhibitors of BACE-1 (beta-site amyloid precursor protein cleaving enzyme (1) receptor using appropriate bioinformatics tools. Forty-four bioactive lead compounds were screened from the bee products through high throughput virtual screening on the basis of their pharmacokinetic and pharmacodynamics characteristics, showing favorable intestinal and oral absorption, bioavailability, blood brain barrier penetration, less skin permeability, and no inhibition of cytochrome P450 inhibitors. The docking score of the forty-four ligand molecules was found to be between -4 and -10.3 kcal/mol, respectively, exhibiting strong binding affinity to BACE1 receptor. The highest binding affinity was observed in the rutin (-10.3 kcal/mol), 3,4-dicaffeoylquinic acid (-9.5 kcal/mol), nemorosone (-9.5 kcal/mol), and luteolin (-8.9 kcal/mol). Furthermore, these compounds demonstrated high total binding energy -73.20 to -105.85 kJ/mol), and low root mean square deviation (0.194-0.202 nm), root mean square fluctuation (0.0985-0.1136 nm), radius of gyration (2.12 nm), number of H-bonds (0.778-5.436), and eigenvector values (2.39-3.54 nm2) in the molecular dynamic simulation, signifying restricted motion of Cα atoms, proper folding and flexibility, and highly stable with compact of the BACE1 receptor with the ligands. Docking and simulation studies concluded that rutin, 3,4-dicaffeoylquinic acid, nemorosone, and luteolin are plausibly used as novel inhibitors of BACE1 to combat AD, but further in-depth experimental investigations are warranted to prove these in silico findings.


Assuntos
Doença de Alzheimer , Idoso , Abelhas , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Ligantes , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Reposicionamento de Medicamentos , Luteolina , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA