Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dev Biol ; 9(4)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34842743

RESUMO

Zebrafish caudal fin rays are used as a model system for regeneration because of their high regenerative ability, but studies on the regeneration polarity of the fin ray are limited. To investigate this regeneration polarity, we made a hole to excise part of the fin ray and analyzed the regeneration process. We confirmed that the fin rays always regenerated from the proximal margin toward the distal margin, as previously reported; however, regeneration-related genes were expressed at both the proximal and distal edges of the hole in the early stage of regeneration, suggesting that the regenerative response also occurs at the distal edge. One difference between the proximal and distal margins is a sheet-like tissue that is formed on the apical side of the regenerated tissue at the proximal margin. This sheet-like tissue was not observed at the distal edge. To investigate whether the distal margin was also capable of forming this sheet-like tissue and subsequent regeneration, we kept the distal margin separated from the proximal margin by manipulation. Consequently, the sheet-like tissue was formed at the distal margin and regeneration of the fin ray was also induced. The regenerated fin rays from the distal margin protruded laterally from the caudal fin and then bent distally, and their ends showed the same characteristics as those of the normal fin rays. These results suggest that fin rays have an ability to regenerate in both directions; however, under normal conditions, regeneration is restricted to the proximal margin because the sheet-like tissue is preferentially formed on the apical side of the regenerating tissue from the proximal margin.

2.
Sci Rep ; 10(1): 649, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959817

RESUMO

Fish have a high ability to regenerate fins, including the caudal fin. After caudal fin amputation, original bi-lobed morphology is reconstructed during its rapid regrowth. It is still controversial whether positional memory in the blastema cells regulates reconstruction of fin morphology as in amphibian limb regeneration, in which limb blastema cells located at the same proximal-distal level have the same positional identity. We investigated growth period and growth rate in zebrafish caudal fin regeneration. We found that both the growth period and growth rate differed for fin rays that were amputated at the same proximal-distal level, indicating that it takes different periods of time for fin rays to restore their original lengths after straight amputation. We also show that more proximal amputation takes longer period to reconstruct the original morphology/size than more distal amputation. Statistical analysis suggested that both the growth period/rate are determined by amputated length (depth) regardless of the fin ray identity along dorsal-ventral axis. In addition, we suggest the possibility that the structural/physical condition such as width of the fin ray at the amputation site (niche at the stump) may determine the growth period/rate.


Assuntos
Cotos de Amputação/patologia , Cotos de Amputação/fisiopatologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/fisiologia , Proliferação de Células , Regeneração , Peixe-Zebra/fisiologia , Animais
3.
Zoological Lett ; 5: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31548912

RESUMO

BACKGROUND: Teleost paired fins are composed of two endoskeletal domains, proximal and distal radials, and an exoskeletal domain, the fin ray. The zebrafish pectoral fin displays elaborately patterned radials along the anteroposterior (AP) axis. Radials are considered homologous to tetrapod limb skeletons, and their patterning mechanisms in embryonic development are similar to those of limb development. Nevertheless, the pattern along the AP axis in fin rays has not been well described in the zebrafish pectoral fin, although several recent reports have revealed that fin ray development shares some cellular and genetic properties with fin/limb endoskeleton development. Thus, fin ray morphogenesis may involve developmental mechanisms for AP patterning in the fin/limb endoskeleton, and may have a specific pattern along the AP axis. RESULTS: We conducted detailed morphological observations on fin rays and their connection to distal radials by comparing intra- and inter-strain zebrafish specimens. Although the number of fin rays varied, pectoral fin rays could be categorized into three domains along the AP axis, according to the connection between the fin rays and distal radials; additionally, the number of fin rays varied in the posterior part of the three domains. This result was confirmed by observation of the morphogenesis process of fin rays and distal radials, which showed altered localization of distal radials in the middle domain. We also evaluated the expression pattern of lhx genes, which have AP patterning activity in limb development, in fin rays and during distal radial development and found these genes to be expressed during morphogenesis in both fin rays and distal radials. CONCLUSION: The fin ray and its connection to the endoskeleton are patterned along the AP axis, and the pattern along the AP axis in the fin ray and the radial connection is constructed by the developmental mechanism related to AP patterning in the limb/fin bud. Our results indicate the possibility that the developmental mechanisms of fin rays and their connection are comparable to those of the distal element of the limb skeleton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA