Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3266, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627502

RESUMO

DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Animais , Feminino , Masculino , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo
2.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37225425

RESUMO

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a protein essential for the maintenance of DNA methylation in somatic cells. However, UHRF1 is predominantly localized in the cytoplasm of mouse oocytes and preimplantation embryos, where it may play a role unrelated to the nuclear function. We herein report that oocyte-specific Uhrf1 KO results in impaired chromosome segregation, abnormal cleavage division, and preimplantation lethality of derived embryos. Our nuclear transfer experiment showed that the phenotype is attributable to cytoplasmic rather than nuclear defects of the zygotes. A proteomic analysis of KO oocytes revealed the down-regulation of proteins associated with microtubules including tubulins, which occurred independently of transcriptomic changes. Intriguingly, cytoplasmic lattices were disorganized, and mitochondria, endoplasmic reticulum, and components of the subcortical maternal complex were mislocalized. Thus, maternal UHRF1 regulates the proper cytoplasmic architecture and function of oocytes and preimplantation embryos, likely through a mechanism unrelated to DNA methylation.


Assuntos
Oócitos , Proteômica , Animais , Camundongos , Citosol , Retículo Endoplasmático , Mitocôndrias , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitina-Proteína Ligases/genética
3.
PLoS Genet ; 17(5): e1009570, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048432

RESUMO

DNA methylation at CG sites is important for gene regulation and embryonic development. In mouse oocytes, de novo CG methylation requires preceding transcription-coupled histone mark H3K36me3 and is mediated by a DNA methyltransferase DNMT3A. DNMT3A has a PWWP domain, which recognizes H3K36me2/3, and heterozygous mutations in this domain, including D329A substitution, cause aberrant CG hypermethylation of regions marked by H3K27me3 in somatic cells, leading to a dwarfism phenotype. We herein demonstrate that D329A homozygous mice show greater CG hypermethylation and severer dwarfism. In oocytes, D329A substitution did not affect CG methylation of H3K36me2/3-marked regions, including maternally methylated imprinting control regions; rather, it caused aberrant hypermethylation in regions lacking H3K36me2/3, including H3K27me3-marked regions. Thus, the role of the PWWP domain in CG methylation seems similar in somatic cells and oocytes; however, there were cell-type-specific differences in affected regions. The major satellite repeat was also hypermethylated in mutant oocytes. Contrary to the CA hypomethylation in somatic cells, the mutation caused hypermethylation at CH sites, including CA sites. Surprisingly, oocytes expressing only the mutated protein could support embryonic and postnatal development. Our study reveals that the DNMT3A PWWP domain is important for suppressing aberrant CG hypermethylation in both somatic cells and oocytes but that D329A mutation has little impact on the developmental potential of oocytes.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Mutação , Oócitos/metabolismo , Domínios Proteicos , Substituição de Aminoácidos , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Feminino , Histonas/química , Histonas/metabolismo , Masculino , Camundongos , Fenótipo , Domínios Proteicos/genética , Transcriptoma
4.
Nat Commun ; 3: 926, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22735454

RESUMO

Chloroplasts have a critical role in plant immunity as a site for the production for salicylic acid and jasmonic acid, important mediators of plant immunity. However, the molecular link between chloroplasts and the cytoplasmic-nuclear immune system remains largely unknown. Here we show that pathogen-associated molecular pattern (PAMP) signals are quickly relayed to chloroplasts and evoke specific Ca(2+) signatures in the stroma. We further demonstrate that a chloroplast-localized protein, named calcium-sensing receptor (CAS), is involved in stromal Ca(2+) transients and responsible for both PAMP-induced basal resistance and R gene-mediated hypersensitive cell death. CAS acts upstream of salicylic acid accumulation. Transcriptome analysis demonstrates that CAS is involved in PAMP-induced expression of defence genes and suppression of chloroplast gene expression possibly through (1)O(2)-mediated retrograde signalling, allowing chloroplast-mediated transcriptional reprogramming during plant immune responses. The present study reveals a previously unknown chloroplast-mediated signalling pathway linking chloroplasts to cytoplasmic-nuclear immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Imunidade Vegetal/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA