Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 11494-11500, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38838269

RESUMO

Aromaticity is one of the most important and widely used concepts in chemistry. Among the various experimentally discovered and theoretically predicted compounds that possess different types of aromaticity, conflicting aromaticity, where aromatic and antiaromatic electron delocalization is present in one molecule simultaneously, remains one of the most controversial and elusive concepts, although theoretically predicted 15 years ago. In this work, we synthesized a novel conflicting aromatic trirhodium complex that contains a σ-aromatic metal fragment surrounded by the π-antiaromatic organic ligand and characterized it by nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, and X-ray single crystal structure analysis. Experimental characterization and quantum chemical calculations confirm the unique conflicting aromaticity of the synthesized trirhodium molecule. Thus, this novel conflicting aromatic molecule expands the family of aromatic compounds. This discovery will enable researchers to develop and understand the phenomena of conflicting aromaticity in chemistry.

2.
Front Microbiol ; 14: 1252155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107868

RESUMO

Membrane vesicles (MVs) are small spherical structures (20-400 nm) produced by most bacteria and have important biological functions including toxin delivery, signal transfer, biofilm formation, and immunomodulation of the host. Although MV formation is enhanced in biofilms of a wide range of bacterial species, the underlying mechanisms are not fully understood. An opportunistic pathogen, Pseudomonas aeruginosa, causes chronic infections that can be difficult to treat due to biofilm formation. Since MVs are abundant in biofilms, can transport virulence factors to the host, and have inflammation-inducing functions, the mechanisms of enhanced MV formation in biofilms needs to be elucidated to effectively treat infections. In this study, we evaluated the characteristics of MVs in P. aeruginosa PAO1 biofilms, and identified factors that contribute to enhanced MV formation. Vesiculation was significantly enhanced in the static culture; MVs were connected to filamentous substances in the biofilm, and separation between the outer and inner membranes and curvature of the membrane were observed in biofilm cells. By screening a transposon mutant library (8,023 mutants) for alterations in MV formation in biofilms, 66 mutants were identified as low-vesiculation strains (2/3 decrease relative to wild type), whereas no mutant was obtained that produced more MVs (twofold increase). Some transposons were inserted into genes related to biofilm formation, including flagellar motility (flg, fli, and mot) and extracellular polysaccharide synthesis (psl). ΔpelAΔpslA, which does not synthesize the extracellular polysaccharides Pel and Psl, showed reduced MV production in biofilms but not in planktonic conditions, suggesting that enhanced vesiculation is closely related to the synthesis of biofilm matrices in P. aeruginosa. Additionally, we found that blebbing occurred during bacterial attachment. Our findings indicate that biofilm-related factors are closely involved in enhanced MV formation in biofilms and that surface sensing facilitates vesiculation. Furthermore, this work expands the understanding of the infection strategy in P. aeruginosa biofilms.

3.
Inorg Chem ; 62(12): 4747-4751, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920034

RESUMO

1ReH•Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReH•Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReH•Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReH•Cl undergoes redox chemistry. The X-ray structure of 1ReH•Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReH•Cl is aromatic based on Baird's rule.

4.
Front Microbiol ; 12: 747606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912309

RESUMO

Membrane vesicles (MVs) are released by various prokaryotes and play a role in the delivery of various cell-cell interaction factors. Recent studies have determined that these vesicles are capable of functioning as mediators of horizontal gene transfer. Outer membrane vesicles (OMVs) are a type of MV that is released by Gram-negative bacteria and primarily composed of outer membrane and periplasm components; however, it remains largely unknown why DNA is contained within OMVs. Our study aimed to understand the mechanism by which DNA that is localized in the cytoplasm is incorporated into OMVs in Gram-negative bacteria. We compared DNA associated with OMVs using Escherichia coli BW25113 cells harboring the non-conjugative, non-mobilized, and high-copy plasmid pUC19 and its hypervesiculating mutants that included ΔnlpI, ΔrseA, and ΔtolA. Plasmid copy per vesicle was increased in OMVs derived from ΔnlpI, in which peptidoglycan (PG) breakdown and synthesis are altered. When supplemented with 1% glycine to inhibit PG synthesis, both OMV formation and plasmid copy per vesicle were increased in the wild type. The bacterial membrane condition test indicated that membrane permeability was increased in the presence of glycine at the late exponential phase, in which cell lysis did not occur. Additionally, quick-freeze deep-etch and replica electron microscopy observations revealed that outer-inner membrane vesicles (O-IMVs) are formed in the presence of glycine. Thus, two proposed routes for DNA incorporation into OMVs under PG-damaged conditions are suggested. These routes include DNA leakage due to increased membrane permeation and O-IMV formation. Additionally, our findings contribute to a greater understanding of the vesicle-mediated horizontal gene transfer that occurs in nature and the utilization of MVs for DNA cargo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA