Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Pharmacol Sci ; 44(10): 674-688, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657967

RESUMO

Iron accumulation has been associated with the etiology and progression of multiple neurodegenerative diseases (NDDs). The exact role of iron in these diseases is not fully understood, but an iron-dependent form of regulated cell death called ferroptosis could be key. Although there is substantial preclinical and clinical evidence that ferroptosis plays a role in NDD, there are still questions regarding how to target ferroptosis therapeutically, including which proteins to target, identification of clinically relevant biomarkers, and which patients might benefit most. Clinical trials of iron- and ferroptosis-targeted therapies are beginning to provide some answers, but there is growing interest in developing new ferroptosis inhibitors. We describe newly identified ferroptosis targets, opportunities, and challenges in NDD, as well as key considerations for progressing new therapeutics to the clinic.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Ferro
2.
J Extracell Vesicles ; 10(2): e12034, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33318779

RESUMO

The misfolding and fibrillization of the protein, α-synuclein (αsyn), is associated with neurodegenerative disorders referred to as the synucleinopathies. Understanding the mechanisms of αsyn misfolding is an important area of interest given that αsyn misfolding contributes to disease pathogenesis. While many studies report the ability of synthetic lipid membranes to modulate αsyn folding, there is little data pertaining to the mechanism(s) of this interaction. αSyn has previously been shown to associate with small lipid vesicles released by cells called extracellular vesicles (EVs) and it is postulated these interactions may assist in the spreading of pathological forms of this protein. Together, this presents the need for robust characterisation studies on αsyn fibrillization using biologically-derived vesicles. In this study, we comprehensively characterised the ability of lipid-rich small extracellular vesicles (sEVs) to alter the misfolding of αsyn induced using the Protein Misfolding Cyclic Amplification (PMCA) assay. The biochemical and biophysical properties of misfolded αsyn were examined using a range of techniques including: Thioflavin T fluorescence, transmission electron microscopy, analytical centrifugation and western immunoblot coupled with protease resistance assays and soluble/insoluble fractionation. We show that sEVs cause an acceleration in αsyn fibrillization and provide comprehensive evidence that this results in an increase in the abundance of mature insoluble fibrillar species. In order to elucidate the relevance of the lipid membrane to this interaction, sEV lipid membranes were modified by treatment with methanol, or a combination of methanol and sarkosyl. These treatments altered the ultrastructure of the sEVs without changing the protein cargo. Critically, these modified sEVs had a reduced ability to influence αsyn fibrillization compared to untreated counterparts. This study reports the first comprehensive examination of αsyn:EV interactions and demonstrates that sEVs are powerful modulators of αsyn fibrillization, which is mediated by the sEV membrane. In doing so, this work provides strong evidence for a role of sEVs in contributing directly to αsyn misfolding in the synucleinopathy disorders.


Assuntos
Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Dobramento de Proteína , Multimerização Proteica , alfa-Sinucleína/metabolismo , Membrana Celular/química , Vesículas Extracelulares/química , Humanos , Conformação Proteica , alfa-Sinucleína/química
3.
Brain Commun ; 2(2): fcaa029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954317

RESUMO

Astrocytes are glial cells of the central nervous system that become reactive under conditions of stress. The functional properties of reactive astrocytes depend on their stimulus that induces the upregulation of specific genes. Reactive astrocytes are a neuropathological feature of prion disorders; however, their role in the disease pathogenesis is not well understood. Here, we describe our studies of one polarization state of reactive astrocytes, termed A1 astrocytes, in the frontal cortex region of 35 human sporadic Creutzfeldt-Jakob disease brains encompassing a range of molecular sub-types. Examination of two mRNA markers of A1 astrocytes, C3 and GBP2, revealed a strong linear correlation between the two following their log-normalization (P = 0.0011). Both markers were found upregulated in the sporadic Creutzfeldt-Jakob disease brain compared with age-matched control tissues (P = 0.0029 and 0.0002, for C3log and GBP2log, respectively), and stratifying samples based on codon 129 genotype revealed that C3log is highest in homozygous methionine and lowest in homozygous valine patients, which followed a linear trend (P = 0.027). Upon assessing other disease parameters, a significant positive correlation was found between GBP2log and disease duration (P = 0.031). These findings provide evidence for a divergence in the astrocytic environment amongst patients with sporadic Creutzfeldt-Jakob disease based on molecular sub-type parameters of disease. While more research will be needed to determine the global changes in the genomic profiles and resulting functional properties of reactive astrocytes in disease, considering the evidence demonstrating that A1 astrocytes harbour neurotoxic properties, the changes seen in C3log and GBP2log in the current study may reflect differences in pathogenic mechanisms amongst the sporadic Creutzfeldt-Jakob disease sub-types associated with the A1 polarization state.

4.
Dis Model Mech ; 13(1)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848207

RESUMO

The misfolding and aggregation of the largely disordered protein, α-synuclein, is a central pathogenic event that occurs in the synucleinopathies, a group of neurodegenerative disorders that includes Parkinson's disease. While there is a clear link between protein misfolding and neuronal vulnerability, the precise pathogenic mechanisms employed by disease-associated α-synuclein are unresolved. Here, we studied the pathogenicity of misfolded α-synuclein produced using the protein misfolding cyclic amplification (PMCA) assay. To do this, previous published methods were adapted to allow PMCA-induced protein fibrillization to occur under non-toxic conditions. Insight into potential intracellular targets of misfolded α-synuclein was obtained using an unbiased lipid screen of 15 biologically relevant lipids that identified cardiolipin (CA) as a potential binding partner for PMCA-generated misfolded α-synuclein. To investigate whether such an interaction can impact the properties of α-synuclein misfolding, protein fibrillization was carried out in the presence of the lipid. We show that CA both accelerates the rate of α-synuclein fibrillization and produces species that harbour enhanced resistance to proteolysis. Because CA is virtually exclusively expressed in the inner mitochondrial membrane, we then assessed the ability of these misfolded species to alter mitochondrial respiration in live non-transgenic SH-SY5Y neuroblastoma cells. Extensive analysis revealed that misfolded α-synuclein causes hyperactive mitochondrial respiration without causing any functional deficit. These data give strong support for the mitochondrion as a target for misfolded α-synuclein and reveal persistent, hyperactive respiration as a potential upstream pathogenic event associated with the synucleinopathies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Dobramento de Proteína , alfa-Sinucleína/química , Cardiolipinas/química , Linhagem Celular Tumoral , Respiração Celular , Sobrevivência Celular , Glicólise , Humanos , Neuroblastoma/patologia
5.
J Biol Chem ; 294(23): 9016-9028, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064841

RESUMO

The misfolding and aggregation of α-synuclein (αsyn) in the central nervous system is associated with a group of neurodegenerative disorders referred to as the synucleinopathies. In addition to being a pathological hallmark of disease, it is now well-established that upon misfolding, αsyn acquires pathogenic properties, such as neurotoxicity, that can contribute to disease development. The mechanisms that produce αsyn misfolding and the molecular events underlying the neuronal damage caused by these misfolded species are not well-defined. A consistent observation that may be relevant to αsyn's pathogenicity is its ability to associate with lipids. This appears important not only to how αsyn aggregates, but also to the mechanism by which the misfolded protein causes intracellular damage. This review discusses the current literature reporting a role of lipids in αsyn misfolding and neurotoxicity in various synucleinopathy disorders and provides an overview of current methods to assess protein misfolding and pathogenicity both in vitro and in vivo.


Assuntos
Lipídeos/química , alfa-Sinucleína/metabolismo , Sistema Nervoso Central/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Agregação Patológica de Proteínas , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , alfa-Sinucleína/química
6.
J Neurochem ; 139(2): 162-180, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27529376

RESUMO

Proteinopathies represent a group of diseases characterized by the unregulated misfolding and aggregation of proteins. Accumulation of misfolded protein in the central nervous system (CNS) is associated with neurodegenerative diseases, such as the transmissible spongiform encephalopathies (or prion diseases), Alzheimer's disease, and the synucleinopathies (the most common of which is Parkinson's disease). Of these, the pathogenic mechanisms of prion diseases are particularly striking where the transmissible, causative agent of disease is the prion, or proteinaceous infectious particle. Prions are composed almost exclusively of PrPSc ; a misfolded isoform of the normal cellular protein, PrPC , which is found accumulated in the CNS in disease. Today, mounting evidence suggests other aggregating proteins, such as amyloid-ß (Aß) and α-synuclein (α-syn), proteins associated with Alzheimer's disease and synucleinopathies, respectively, share similar biophysical and biochemical properties with PrPSc that influences how they misfold, aggregate, and propagate in disease. In this regard, the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of folded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity. This review discusses the common features Aß and α-syn share with PrP and neurotoxic mechanisms associated with these misfolded proteins. Several proteins are known to misfold and accumulate in the central nervous system causing a range of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and the prion diseases. Prions are transmissible misfolded conformers of the prion protein, PrP, which seed further generation of infectious proteins. Similar effects have recently been observed in proteins associated with Alzheimer's disease and the synucleinopathies, leading to the proposition that the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of misfolded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/genética , Doenças Priônicas/patologia , Proteínas Priônicas/toxicidade , Deficiências na Proteostase/patologia , alfa-Sinucleína/genética , Doença de Alzheimer/patologia , Animais , Humanos , Proteínas PrPSc/genética , Proteínas PrPSc/toxicidade
7.
Sci Rep ; 6: 26309, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27199164

RESUMO

Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 µm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease.


Assuntos
Asma/fisiopatologia , Autoantígenos/farmacologia , Colágeno Tipo IV/farmacologia , Pulmão/patologia , Remodelação Vascular/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Alérgenos/administração & dosagem , Animais , Asma/imunologia , Autoantígenos/administração & dosagem , Líquido da Lavagem Broncoalveolar/citologia , Doença Crônica , Colágeno Tipo IV/administração & dosagem , Dermatophagoides pteronyssinus/imunologia , Feminino , Inflamação/patologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Músculo Liso/metabolismo , Carneiro Doméstico , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Biochim Biophys Acta ; 1848(10 Pt A): 2031-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051124

RESUMO

The mechanism of membrane disruption by melittin (MLT) of giant unilamellar vesicles (GUVs) and live cells was studied using fluorescence microscopy and two fluorescent synthetic analogues of MLT. The N-terminus of one of these was acylated with thiopropionic acid to enable labeling with maleimido-AlexaFluor 430 to study the interaction of MLT with live cells. It was compared with a second analogue labeled at P14C. The results indicated that the fluorescent peptides adhered to the membrane bilayer of phosphatidylcholine GUVs and inserted into the plasma membrane of HeLa cells. Fluorescence and light microscopy revealed changes in cell morphology after exposure to MLT peptides and showed bleb formation in the plasma membrane of HeLa cells. However, the membrane disruptive effect was dependent upon the location of the fluorescent label on the peptide and was greater when MLT was labeled at the N-terminus. Proline at position 14 appeared to be important for antimicrobial activity, hemolysis and cytotoxicity, but not essential for cell membrane disruption.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Meliteno/química , Espectrometria de Fluorescência/métodos , Células HeLa , Humanos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA