Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0281008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36716334

RESUMO

Changes in terrestrial vegetation during the mid-Cretaceous and their link to climate and environmental change are poorly understood. In this study, we use plant macrofossils and analysis of fossil pollen and spores from the Western Desert, Egypt, to assess temporal changes in plant communities during the Cenomanian. The investigated strata have relatively diverse sporomorph assemblages, which reflect the nature of parent vegetation. Specifically, the palynofloras represent ferns, conifers, monosulcate pollen producers, Gnetales, and a diverse group of angiosperms. Comparisons of both, dispersed palynoflora and plant macrofossils reveal different characteristics of the palaeoflora owing to a plethora of taphonomical and ecological biases including the depositional environment, production levels, and discrepancies between different plant organs. A combination of detailed records of sporomorphs, leaves, and charcoal from the studied successions provide new understandings of the palaeoclimate and palaeogeography during the Cenomanian and Albian-Cenomanian transition in Egypt. The mixed composition of the palynofloral assemblages reflects the presence of different depositional situations with a weak marine influence, as evidenced by a minor dinoflagellate cysts component. The local vegetation comprised various categories including herbaceous groups including ferns and eudicots, fluvial, open environments, and xeric arboreal communities dominated by Cheirolepidiaceae and perhaps including drought- and/or salt-tolerating ferns (Anemiaceae) and other gymnosperms (Araucariaceae, Ginkgoales, Cycadales, and Gnetales) as well as angiosperms. The presence of riparian and freshwater wetland communities favouring aquatic and/or hygrophilous ferns (of Salviniaceae and Marsileaceae), is noted. The wide variation of depositional settings derived from the palynological data may be attributed to a prevalent occurrence of producers in local vegetation during the early Cenomanian of Egypt. For the purpose of this work on the studied Bahariya Formation and its equivalent rock units, where iconic dinosaurs and other fossil fauna roamed, we attempt to improve the understanding of Egypt's Cenomanian climate, which is reconstructed as generally warm and humid punctuated by phases of considerably drier conditions of varying duration.


Assuntos
Gleiquênias , Magnoliopsida , Traqueófitas , Ecossistema , Biodiversidade , Mudança Climática , Egito , Esporos de Protozoários , Fósseis , Plantas
2.
PLoS One ; 14(3): e0213854, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870527

RESUMO

Distribution and abundance of charcoal in coal seams (in form of pyrogenic macerals of the inertinites group) have been considered as a reliable tool to interpret the local and regional palaeo-wildfire regimes in peat-forming depositional environments. Although the occurrence of inertinites is globally well documented for the Late Palaeozoic, the description of palaeobotanical evidence concerning the source plants of such charcoal is so far largely missing. In the present study, we provide the first detailed analysis of macro-charcoal preserved in the Barro Branco coal seam, Rio Bonito Formation, Cisuralian of the Paraná Basin, Santa Catarina State, Brazil. Charcoal, in form of macro-charcoal and inertinites, was documented in all the six coal-bearing strata that compose the succession, confirming the occurrence of recurrent palaeo-wildfires during its deposition. Reflectance values indicated a mean charring temperature reaching ~515°C (and up to 1,045°C in excess) and the macro-charcoal exhibits anatomical features of secondary xylem of Agathoxylon. Combination of results derived from palaeobotanical and petrological data demonstrates that gymnosperm-dominated vegetation was repeatedly submitted to fire events and reinforced the hypothesis that Gondwanan mires were high-fire systems during the Cisuralian.


Assuntos
Carvão Vegetal/química , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Paleontologia , Incêndios Florestais , Brasil
3.
Biol Rev Camb Philos Soc ; 90(1): 236-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24784793

RESUMO

Biodiversity is unevenly distributed on Earth and hotspots of biodiversity are often associated with areas that have undergone orogenic activity during recent geological history (i.e. tens of millions of years). Understanding the underlying processes that have driven the accumulation of species in some areas and not in others may help guide prioritization in conservation and may facilitate forecasts on ecosystem services under future climate conditions. Consequently, the study of the origin and evolution of biodiversity in mountain systems has motivated growing scientific interest. Despite an increasing number of studies, the origin and evolution of diversity hotspots associated with the Qinghai-Tibetan Plateau (QTP) remains poorly understood. We review literature related to the diversification of organisms linked to the uplift of the QTP. To promote hypothesis-based research, we provide a geological and palaeoclimatic scenario for the region of the QTP and argue that further studies would benefit from providing a complete set of complementary analyses (molecular dating, biogeographic, and diversification rates analyses) to test for a link between organismic diversification and past geological and climatic changes in this region. In general, we found that the contribution of biological interchange between the QTP and other hotspots of biodiversity has not been sufficiently studied to date. Finally, we suggest that the biological consequences of the uplift of the QTP would be best understood using a meta-analysis approach, encompassing studies on a variety of organisms (plants and animals) from diverse habitats (forests, meadows, rivers), and thermal belts (montane, subalpine, alpine, nival). Since the species diversity in the QTP region is better documented for some organismic groups than for others, we suggest that baseline taxonomic work should be promoted.


Assuntos
Altitude , Evolução Biológica , Ecossistema , Fenômenos Geológicos , Animais , Tibet
4.
PLoS One ; 7(5): e36817, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615819

RESUMO

BACKGROUND: Mammalian fossils from the Eppelsheim Formation (Dinotheriensande) have been a benchmark for Neogene vertebrate palaeontology since 200 years. Worldwide famous sites like Eppelsheim serve as key localities for biochronologic, palaeobiologic, environmental, and mammal community studies. So far the formation is considered to be of early Late Miocene age (~9.5 Ma, Vallesian), representing the oldest sediments of the Rhine River. The stratigraphic unity of the formation and of its fossil content was disputed at times, but persists unresolved. PRINCIPAL FINDINGS: Here we investigate a new fossil sample from Sprendlingen, composed by over 300 mammalian specimens and silicified wood. The mammals comprise entirely Middle Miocene species, like cervids Dicrocerus elegans, Paradicrocerus elegantulus, and deinotheres Deinotherium bavaricum and D. levius. A stratigraphic evaluation of Miocene Central European deer and deinothere species proof the stratigraphic inhomogenity of the sample, and suggest late Middle Miocene (~12.5 Ma) reworking of early Middle Miocene (~15 Ma) sediments. This results agree with taxonomic and palaeoclimatic analysis of plant fossils from above and within the mammalian assemblage. Based on the new fossil sample and published data three biochronologic levels within the Dinotheriensand fauna can be differentiated, corresponding to early Middle Miocene (late Orleanian to early Astaracian), late Middle Miocene (late Astaracian), and early Late Miocene (Vallesian) ages. CONCLUSIONS/SIGNIFICANCE: This study documents complex faunal mixing of classical Dinotheriensand fauna, covering at least six million years, during a time of low subsidence in the Mainz Basin and shifts back the origination of the Rhine River by some five million years. Our results have severe implications for biostratigraphy and palaeobiology of the Middle to Late Miocene. They suggest that turnover events may be obliterated and challenge the proposed 'supersaturated' biodiversity, caused by Middle Miocene superstites, of Vallesian ecosystems in Central Europe.


Assuntos
Fósseis , Rios , Animais , Mamíferos
5.
New Phytol ; 166(2): 465-84, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15819911

RESUMO

Leaf physiognomic traits vary predictably along climatic and environmental gradients. The relationships between leaf physiognomy and climate have been investigated on different continents, but so far an investigation based on European vegetation has been missing. A grid data set (0.5 degrees x 0.5 degrees latitude/longitude) has been compiled in order to determine spatial patterns of leaf physiognomy across Europe. Based on distribution maps of native European hardwoods, synthetic chorologic flora lists were compiled for all grid cells. Every synthetic chorologic flora was characterised by 25 leaf physiognomic traits and correlated with 16 climatic parameters. Clear spatial patterns of leaf physiognomy have been observed, which are statistically significant related to certain, temperature-related climate parameters. Transfer functions for several climatic parameters have been established, based on the observed relationships. The study provides evidence that synthetically generated floras represent a powerful tool for analysing spatial patterns of leaf physiognomy and their relationships to climate. The transfer functions from the European data set indicate slightly different relationships of leaf physiognomy and environment compared with results obtained from other continents.


Assuntos
Evolução Biológica , Clima , Folhas de Planta/anatomia & histologia , Demografia , Europa (Continente) , Fenômenos Fisiológicos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA