Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 168: 115698, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865992

RESUMO

Metastasis is directly linked to poor prognosis of cancer patients and warrants search for effective anti-metastatic drugs. MACC1 is a causal key molecule for metastasis. High MACC1 expression is prognostic for metastasis and poor survival. Here, we developed novel small molecule inhibitors targeting MACC1 expression to impede metastasis formation. We performed a human MACC1 promoter-driven luciferase reporter-based high-throughput screen (HTS; 118.500 compound library) to identify MACC1 transcriptional inhibitors. HTS revealed 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds as efficient transcriptional inhibitors of MACC1 expression, able to decrease MACC1-induced cancer cell motility in vitro. Structure-activity relationships identified the essential inhibitory core structure. Best candidates were evaluated for metastasis inhibition in xenografted mouse models demonstrating metastasis restriction. ADMET showed high drug-likeness of these new candidates for cancer therapy. The NFκB pathway was identified as one mode of action targeted by these compounds. Taken together, 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds are effective MACC1 inhibitors and pose promising candidates for anti-metastatic therapies particularly for patients with MACC1-overexpressing cancers, that are at high risk to develop metastases. Although further preclinical and clinical development is necessary, these compounds represent important building blocks for an individualized anti-metastatic therapy for solid cancers.


Assuntos
Neoplasias , Transativadores , Animais , Humanos , Camundongos , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Transativadores/antagonistas & inibidores
2.
Redox Biol ; 62: 102639, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958250

RESUMO

Despite a strong rationale for why cancer cells are susceptible to redox-targeting drugs, such drugs often face tumor resistance or dose-limiting toxicity in preclinical and clinical studies. An important reason is the lack of specific biomarkers to better select susceptible cancer entities and stratify patients. Using a large panel of lung cancer cell lines, we identified a set of "antioxidant-capacity" biomarkers (ACB), which were tightly repressed, partly by STAT3 and STAT5A/B in sensitive cells, rendering them susceptible to multiple redox-targeting and ferroptosis-inducing drugs. Contrary to expectation, constitutively low ACB expression was not associated with an increased steady state level of reactive oxygen species (ROS) but a high level of nitric oxide, which is required to sustain high replication rates. Using ACBs, we identified cancer entities with a high percentage of patients with favorable ACB expression pattern, making it likely that more responders to ROS-inducing drugs could be stratified for clinical trials.


Assuntos
Antioxidantes , Neoplasias Pulmonares , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Neoplasias Pulmonares/metabolismo , Oxirredução , Biomarcadores/metabolismo
3.
J Am Chem Soc ; 144(41): 18861-18875, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200994

RESUMO

We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.


Assuntos
Inibidores de Histona Desacetilases , Isoenzimas , Humanos , Vorinostat , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Células HeLa , Histona Desacetilases/química , Poliaminas/farmacologia , Zinco , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
4.
Bioorg Med Chem ; 65: 116785, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525109

RESUMO

PP1 is a major phosphoserine/threonine-specific phosphatase that is involved in diseases such as heart insufficiency and diabetes. PP1-disrupting peptides (PDPs) are selective modulators of PP1 activity that release its catalytic subunit, which then dephosphorylates nearby substrates. Recently, PDPs enabled the creation of phosphatase-recruiting chimeras, which are bifunctional molecules that guide PP1 to a kinase to dephosphorylate and inactivate it. However, PDPs are 23mer peptides, which is not optimal for their use in therapy due to potential stability and immunogenicity issues. Therefore, we present here the sequence optimization of the 23mer PDP to a 5mer peptide, involving several attempts considering structure-based virtual screening, high throughput screening and peptide sequence optimization. We provide here a strong pharmacophore as lead structure to enable PP1 targeting in therapy or its use in phosphatase-recruiting chimeras in the future.


Assuntos
Peptídeos , Treonina , Sequência de Aminoácidos , Domínio Catalítico , Peptídeos/química , Fosforilação , Proteína Fosfatase 1/metabolismo , Treonina/metabolismo
5.
Biochemistry ; 60(33): 2560-2575, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34339177

RESUMO

The self-labeling protein tags (SLPs) HaloTag7, SNAP-tag, and CLIP-tag allow the covalent labeling of fusion proteins with synthetic molecules for applications in bioimaging and biotechnology. To guide the selection of an SLP-substrate pair and provide guidelines for the design of substrates, we report a systematic and comparative study of the labeling kinetics and substrate specificities of HaloTag7, SNAP-tag, and CLIP-tag. HaloTag7 reaches almost diffusion-limited labeling rate constants with certain rhodamine substrates, which are more than 2 orders of magnitude higher than those of SNAP-tag for the corresponding substrates. SNAP-tag labeling rate constants, however, are less affected by the structure of the label than those of HaloTag7, which vary over 6 orders of magnitude for commonly employed substrates. Determining the crystal structures of HaloTag7 and SNAP-tag labeled with fluorescent substrates allowed us to rationalize their substrate preferences. We also demonstrate how these insights can be exploited to design substrates with improved labeling kinetics.


Assuntos
Corantes Fluorescentes/química , O(6)-Metilguanina-DNA Metiltransferase/química , Proteínas Recombinantes de Fusão/química , Cinética , Modelos Moleculares , O(6)-Metilguanina-DNA Metiltransferase/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Rodaminas/química , Coloração e Rotulagem , Especificidade por Substrato
6.
Cell Rep ; 36(3): 109394, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289372

RESUMO

Novel treatment options for metastatic colorectal cancer (CRC) are urgently needed to improve patient outcome. Here, we screen a library of non-characterized small molecules against a heterogeneous collection of patient-derived CRC spheroids. By prioritizing compounds with inhibitory activity in a subset of-but not all-spheroid cultures, NCT02 is identified as a candidate with minimal risk of non-specific toxicity. Mechanistically, we show that NCT02 acts as molecular glue that induces ubiquitination of cyclin K (CCNK) and proteasomal degradation of CCNK and its complex partner CDK12. Knockout of CCNK or CDK12 decreases proliferation of CRC cells in vitro and tumor growth in vivo. Interestingly, sensitivity to pharmacological CCNK/CDK12 degradation is associated with TP53 deficiency and consensus molecular subtype 4 in vitro and in patient-derived xenografts. We thus demonstrate the efficacy of targeted CCNK/CDK12 degradation for a CRC subset, highlighting the potential of drug-induced proteolysis for difficult-to-treat types of cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteólise , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteômica , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
7.
Angew Chem Int Ed Engl ; 56(23): 6454-6458, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28452102

RESUMO

We dissected halogen-aryl π interactions experimentally using a bicyclic N-arylimide based molecular torsion balances system, which is based on the influence of the non-bonded interaction on the equilibria between folded and unfolded states. Through comparison of balances modulated by higher halogens with fluorine balances, we determined the magnitude of the halogen-aryl π interactions in our unimolecular systems to be larger than -5.0 kJ mol-1 , which is comparable with the magnitude estimated in the biomolecular systems. Our study provides direct experimental evidence of halogen-aryl π interactions in solution, which until now have only been revealed in the solid state and evaluated theoretically by quantum-mechanical calculations.

8.
Angew Chem Int Ed Engl ; 55(45): 13985-13989, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723199

RESUMO

Research and therapeutic targeting of the phosphoserine/threonine phosphatases PP1 and PP2A is hindered by the lack of selective inhibitors. The microcystin (MC) natural toxins target both phosphatases with equal potency, and their complex synthesis has complicated structure-activity relationship studies in the past. We report herein the synthesis and biochemical evaluation of 11 MC analogues, which was accomplished through an efficient strategy combining solid- and solution-phase approaches. Our approach led to the first MC analogue with submicromolar inhibitory potency that is strongly selective for PP2A over PP1 and does not require the complex lipophilic Adda group. Through mutational and structural analyses, we identified a new key element for binding, as well as reasons for the selectivity. This work gives unprecedented insight into how selectivity between these phosphatases can be achieved with MC analogues.

9.
J Biol Chem ; 291(34): 17787-803, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382052

RESUMO

Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/genética , Interferência de RNA
10.
J Chem Inf Model ; 51(4): 843-51, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21410249

RESUMO

Modeling off-target effects is one major goal of chemical biology, particularly in its applications to drug discovery. Here, we describe a new approach that allows the extraction of structure-activity relationships from large chemogenomic spaces starting from a single chemical structure. Several public source databases, offering a vast amount of data on structure and activity for a large number of different targets, have been investigated for their usefulness in automated structure-activity relationships (SAR) extraction. SAR tables were constructed by assembling similar structures around each query structure that have an activity record for a particular target. Quantitative series enrichment analysis (QSEA) was applied to these SAR tables to identify trends and to transform these trends into topomer CoMFA models. Overall more than 1700 SAR tables with topomer CoMFA models have been obtained from the ChEMBL, PubChem, and ChemBank databases. These models were able to highlight the structural trends associated with various off-target effects of marketed drugs, including cases where other structural similarity metrics would not have detected an off-target effect. These results indicate the usefulness of the QSEA approach, particularly whenever applicable with public databases, in providing a new means, beyond a simple similarity between ligand structures, to capture SAR trends and thereby contribute to success in drug discovery.


Assuntos
Algoritmos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Relação Estrutura-Atividade , Bases de Dados Factuais , Informática/métodos , Ligantes , Modelos Moleculares , Estrutura Molecular , Preparações Farmacêuticas/química , Ligação Proteica
11.
J Mol Graph Model ; 21(1): 37-45, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12413029

RESUMO

The present paper describes our molecular modeling and quantitative structure-activity relationships (QSARs) studies on K(ATP) channel openers (KCOs) of the benzopyran type. In the first part we performed molecular modeling investigations with seven benzopyrans, varied at the C3- and C4-positions, in order to understand which molecular features at these positions are essentially effecting the biological activity. The impact of C6-substitution on biological activity was studied in the second part via HANSCH analysis. For this purpose physicochemical properties (charge distributions, lowest unoccupied molecular orbital (LUMO) energies, desolvation energies, volumes and dipole moments) were calculated for a set of 50 C6-varied benzopyrans. A QSAR equation was developed showing a relationship between the vasodilator activity and the direction of the dipole vector of the ligands. The conclusion can be drawn that a direct interaction between the C6-substituents and the receptor structure is not of primary importance. However, the substitutents influence the orientation of the whole ligand approaching the binding site. An unfavorably oriented ligand cannot bind to the binding site, thus exhibiting weak activity.


Assuntos
Benzopiranos/química , Canais de Potássio/química , Benzopiranos/metabolismo , Sítios de Ligação , Cromakalim , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Canais de Potássio/metabolismo , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA