Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 131(2): 281.e1-281.e9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985307

RESUMO

STATEMENT OF PROBLEM: The 2-implant mandibular overdenture (2IMO) is a popular treatment for patients with mandibular edentulism. However, information on the influence of implant positions on crestal strain is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions. MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05). RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (P<.05) strain values were observed on the distal strain gauge channels CH4 and CH1 than on the mesial channels CH3 and CH2 under bilateral loading and on the right side under unilateral loading. CONCLUSIONS: Peri-implant crestal strains in the 2IMO increased by increasing the distance of the implants from the midline. The stress values progressively increased from 5 to 10 mm to 15 to 20 mm from midline, represented as lateral incisor, canine, and premolar positions. The distal side of the implants exhibits higher strains than the mesial side of the implants.


Assuntos
Implantes Dentários , Humanos , Feminino , Masculino , Revestimento de Dentadura , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário/métodos , Mandíbula/cirurgia , Impressão Tridimensional , Retenção de Dentadura
2.
J Prosthet Dent ; 130(4): 586-596, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35086683

RESUMO

STATEMENT OF PROBLEM: The 2-implant mandibular overdenture is a popular treatment for the edentulous mandible, but information on optimum implant positions and/or angulations and their stress and strain patterns is lacking. PURPOSE: The purpose of this finite element analysis study was to evaluate stress and strain distribution patterns in 2-implant mandibular overdentures with different positions and angulations of implants under unilateral and bilateral loading. MATERIAL AND METHODS: A cone beam computed tomography (CBCT)-based, 3-dimensional (3D) model of the mandible and an intraoral scanning-based 3D model of the denture were developed in the Mimics software program. A 3D model of a standard-sized implant with a low-profile overdenture attachment (LOCATOR) was developed in the Solidworks software program. Two implants were inserted in the 3D model of the mandible, with implants placed at different positions, 5, 10, 15, and 20 mm from the midline, and different distal angulations, 0-5, 0-10, 0-15, 5-5, 10-10, and 15-15 degrees (at 10-mm distance), in the 3Matics software program. Unilateral and bilateral vertical loads of 100 N were applied on the first molars in the ANSYS software program to record maximum von Mises stresses and strain values. RESULTS: The stresses in the implants were maximum when placed at a 20-mm distance (4.18 MPa under unilateral and 4.2 MPa under bilateral loading), while for the implants placed at 5 mm, 10 mm, and 15 mm, the indicated stresses were less than 2.46 MPa following an increasing trend with an increase in the distance. The stresses in the implants were maximum when placed at 15-15-degree angulations (0.93 under unilateral and 0.92 MPa under bilateral loading). For lower angulations, the stresses on the implants ranged from 0.05 to 0.87 MPa. No specific trend was observed in stresses and strains with 0-5-, 0-10-, and 0-15-degree angulations, but an increasing trend was observed with 5-5-, 10-10-, and 15-15-degree angulations under unilateral loading. Under bilateral loading, the stresses and strains on the implants and the mandible showed negligible variations across all 6 angulations. CONCLUSIONS: The most posterior position of implants (20 mm) exhibited the highest stresses and strains on the implants and the mandible under both loading conditions. Implants placed with 15-15-degree angulations exhibited the highest stresses. Stresses and strains were similar in implants with lower angulations.

3.
Int J Dent ; 2022: 7052955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160113

RESUMO

Objectives: To evaluate the retentive strength of overdenture attachments in 2-implant mandibular overdenture (2IMO) with implants placed at different positions and angulations. Materials and Methods: Edentulous mandibular models were 3D-printed using CBCT images and Materialise Mimics software and the denture models using the intraoral scanner. Two standard implants were placed parallel at different positions from midline (5, 10, 15, and 20 mm) with 0-0 degree angulations and with different distal angulations (0-5, 0-10, 0-15, 5-5, 10-10, and 15-15 degrees) at 10±mm from midline representing 10 study groups. Low-profile male attachments were attached to the implants and the female pink attachments were picked up in the denture. A total of 4 simulated overdenture model sets for each of the 10 study groups were subjected to the universal testing machine thrice to measure a peak load (N) to disengage the attachments vertically. Data were analyzed using one-way ANOVA and Tukey's post hoc test at 0.05 significance level. Results: Varying implant positions had a statistically significant effect on the retentive strengths of the attachments (F = 5.61, P = 0.002). Peak load-to-dislodgement values (in increasing order) were 49.64 ± 8.27 N for 5 mm, 53.26 ± 11.48 N for 10 mm, 60.24 ± 12.31 N for 15 mm, and 64.80 ± 6.78 N for 20 mm groups. The retentive strength of the 20 mm group was significantly higher than 5 mm (P = 0.003) and 10 mm (P = 0.03) groups. Varying implant angulations had a significant effect on the retentive strengths of the attachments (F = 7.412, P = 0.000). The peak load-to-dislodgement values (in increasing order) were 48.20 ± 15.59 N for 5-5 degrees, 53.26 ± 11.48 N for 0-0 degrees, 54.96 ± 8.25 N for 0-5 degrees, 57.71 ± 7.62 N for 10-10 degrees, 66.00 ± 17.54 N for 15-15 degrees, 66.18 ± 14.09 N for 0-10 degrees, and 77.38 ± 10.33 N for 0-15 degrees. Retentive strength of 0-15 degrees was significantly (P < 0.05) higher than those of 0-0, 0-5, 5-5, and 10-10 degrees and that of 5-5 degrees was significantly (P < 0.05) lower than those of 0-10, 0-15, and 15-15 groups. Conclusions: Retentive strength of the 2IMO increased with increase in distance of implants from midline and increased with increase in distal angulations.

4.
J Prosthet Dent ; 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35667890

RESUMO

STATEMENT OF PROBLEM: The edentulous mandible is commonly treated with a 2-implant overdenture. A change in diameter of the implants may affect the biomechanical behavior of the overdenture, but information on these effects is lacking. PURPOSE: The purpose of this 3D finite element analysis study was to evaluate the biomechanical behavior of 2-implant mandibular overdentures (2IMO) and their individual components by using implants of different diameters. MATERIAL AND METHODS: A 3D mandibular model was obtained from the cone beam computed tomography (CBCT) images of a 59-year-old edentulous man, and a 3D denture model was developed from intraoral scanning files in the Mimics software program. A 3D model of different diameters of implants (2.5 mm, 3.0 mm, 3.5 mm, and 4.0 mm) with a LOCATOR attachment was developed in the Solidworks software program. Two same-sized implants were inserted in the mandibular model at 10 mm from the midline in the 3Matics software program. A vertical load of 100 N was applied on the first molar region on the right side or both sides in the ANSYS software program. The maximum von Mises stresses and strains were recorded and analyzed. RESULTS: Stresses within the implants decreased with an increase in diameter (from 2.5 mm to 3 mm, 3.5 mm, and 4.0 mm) of the implants. The highest stresses were observed with 2.5-mm-diameter implants (0.949 MPa under unilateral and 0.915 MPa under bilateral loading) and the lowest with Ø4-mm implants (0.710 MPa under unilateral and 0.703 MPa under bilateral loading). The strains on the implants ranged between 0.0000056 and 0.0000097, and those on the mandible ranged between 0.0000513 and 0.0000566 across all diameters of the implants without following a specific trend. CONCLUSIONS: In 2IMO, the stresses in the implants and mandible decreased with an increase in the diameter of the implants. The implants of lesser diameter (2.5 mm) exhibited the highest stresses and strains, and the implants of the largest diameter (4 mm) exhibited the lowest stresses and strains under unilateral and bilateral loading conditions.

5.
J Prosthet Dent ; 125(1): 138.e1-138.e8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33393474

RESUMO

STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level. PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions. MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed. RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading. CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.


Assuntos
Implantes Dentários , Revestimento de Dentadura , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Retenção de Dentadura , Análise de Elementos Finitos , Humanos , Mandíbula/diagnóstico por imagem , Padrões de Referência , Estresse Mecânico
6.
J Conserv Dent ; 20(2): 81-85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855752

RESUMO

OBJECTIVES: To compare the relative axis modification and canal concentricity after glide path preparation with 20/0.02 hand K-file (NITIFLEX®) and 20/0.04 rotary file (HyFlex™ CM) with subsequent instrumentation with 1.5 mm self-adjusting file (SAF). MATERIALS AND METHODS: One hundred and twenty ISO 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer, Ballaigues, Switzerland) were acquired and randomly divided into following two groups (n = 60): group 1, establishing glide path till 20/0.02 hand K-file (NITIFLEX®) followed by instrumentation with 1.5 mm SAF; and Group 2, establishing glide path till 20/0.04 rotary file (HyFlex™ CM) followed by instrumentation with 1.5 mm SAF. Pre- and post-instrumentation digital images were processed with MATLAB R 2013 software to identify the central axis, and then superimposed using digital imaging software (Picasa 3.0 software, Google Inc., California, USA) taking five landmarks as reference points. Student's t-test for pairwise comparisons was applied with the level of significance set at 0.05. RESULTS: Training blocks instrumented with 20/0.04 rotary file and SAF were associated less deviation in canal axis (at all the five marked points), representing better canal concentricity compared to those, in which glide path was established by 20/0.02 hand K-files followed by SAF instrumentation. CONCLUSION: Canal geometry is better maintained after SAF instrumentation with a prior glide path established with 20/0.04 rotary file.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA