Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 127(2): e2021JA030115, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35847659

RESUMO

Previous spacecraft studies showed that stormtime poloidal ultralow-frequency (ULF) waves in the ring current region have an antisymmetric (second harmonic) mode structure about the magnetic equator. This paper reports Van Allen Probes observations of symmetric ULF waves in the postnoon sector during a moderate geomagnetic storm. The mode structure is determined from the presence of purely compressional magnetic field oscillations at the equator accompanied by strong transverse electric field perturbations. Antisymmetric waves were also detected but only very late in the recovery phase. The symmetric waves were detected outside the plasmasphere at L = 3.0-5.5 and had peak power at 4-10 mHz, lower than the frequency of the local fundamental toroidal standing Alfvén wave. During the wave events, the flux of protons was enhanced at energies below ∼5 keV, which appears to be a prerequisite for the waves. The protons may provide free energies to waves through drift resonance instability or drift compressional instability, which occur in the presence of radial gradients of plasma parameters.

2.
Geophys Res Lett ; 48(19): e2021GL094002, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35846947

RESUMO

The Kelvin-Helmholtz instability at the magnetospheric boundary plays a crucial role in solar wind-magnetosphere-ionosphere coupling, particle entry, and energization. The full extent of its impact has remained an open question due, in part, to global models without sufficient resolution to capture waves at higher latitudes. Using global magnetohydrodynamic simulations, we investigate an event when the Magnetospheric Multiscale (MMS) mission observed periodic low-frequency waves at the dawn-flank, high-latitude boundary layer. We show the layer to be unstable, even though the slow solar wind with the draped interplanetary magnetic field is seemingly unfavorable for wave generation. The simulated velocity shear at the boundary is thin ( ∼ 0.65 R E ) and requires commensurately high spatial resolution. These results, together with MMS observations, confirm for the first time in fully three-dimensional global geometry that KH waves can grow in this region and thus can be an important process for energetic particle acceleration, dynamics, and transport.

3.
J Geophys Res Space Phys ; 125(9): e2020JA028215, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33282620

RESUMO

Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called "RBSP") at ~5.8 R E, and a THEMIS satellite at ~5.3 R E, observed substorm-related particle injections and local dipolarizations near the central meridian (~22 MLT) of a wedge-like current system. The large-scale evolution of the electron and ion (H, He, and O) injections was almost identical at the two RBSP spacecraft with ~0.5 R E apart. However, the initial short-timescale particle injections exhibited a striking difference between RBSP-A and -B: RBSP-B observed an energy dispersionless injection which occurred concurrently with a transient, strong dipolarization front (DF) with a peak-to-peak amplitude of ~25 nT over ~25 s; RBSP-A measured a dispersed/weaker injection with no corresponding DF. The spatiotemporally localized DF was accompanied by an impulsive, westward electric field (~20 mV m-1). The fast, impulsive E × B drift caused the radial transport of the electron and ion injection regions from GEO to ~5.8 R E. The penetrating DF fields significantly altered the rapid energy- and pitch angle-dependent flux changes of the electrons and the H and He ions inside GEO. Such flux distributions could reflect the transient DF-related particle acceleration and/or transport processes occurring inside GEO. In contrast, O ions were little affected by the DF fields.

4.
Geophys Res Lett ; 47(14): e2020GL088227, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32999513

RESUMO

Explosive magnetotail activity has long been understood in the context of its auroral manifestations. While global models have been used to interpret and understand many magnetospheric processes, the temporal and spatial scales of some auroral forms have been inaccessible to global modeling creating a gulf between observational and theoretical studies of these phenomena. We present here an important step toward bridging this gulf using a newly developed global magnetosphere-ionosphere model with resolution capturing ≲ 30 km azimuthal scales in the auroral zone. In a global magnetohydrodynamic (MHD) simulation of the growth phase of a synthetic substorm, we find the self-consistent formation and destabilization of localized magnetic field minima in the near-Earth magnetotail. We demonstrate that this destabilization is due to ballooning-interchange instability which drives earthward entropy bubbles with embedded magnetic fronts. Finally, we show that these bubbles create localized field-aligned current structures that manifest in the ionosphere with properties matching observed auroral beads.

5.
J Geophys Res Space Phys ; 124(7): 5461-5481, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598452

RESUMO

Extended periods of northward interplanetary magnetic field (IMF) lead to the formation of a cold, dense plasma sheet due to the entry of solar wind plasma into the magnetosphere. Identifying the paths that the solar wind takes to enter the magnetosphere, and their relative importance has remained elusive. Any theoretical model of entry must satisfy observational constraints, such as the overall entry rate and the dawn-dusk asymmetry observed in the cold, dense plasma sheet. We model, using a combination of global magnetohydrodynamic and test particle simulations, solar wind ion entry into the magnetosphere during northward IMF and compare entry facilitated by the Kelvin-Helmholtz instability to cusp reconnection. For Kelvin-Helmholtz entry we reproduce transport rates inferred from observation and kinetic modeling and find that intravortex reconnection creates buoyant flux tubes, which provides, through interchange instability, a mechanism of filling the central plasma sheet with cold magnetosheath plasma. For cusp entry we show that an intrinsic dawn-dusk asymmetry is created during entry that is the result of alignment of the westward ion drift with the dawnward electric field typically observed during northward IMF. We show that both entry mechanisms provide comparable mass but affect entering plasma differently. The flank-entering plasma is cold and dawn-dusk symmetric, whereas the cusp-entering plasma is accelerated and preferentially deflected toward dawn. The combined effect of these entry mechanisms results in a plasma sheet population that exhibits dawn-dusk asymmetry in the manner that is seen in nature: a two-component (hot and cold) dusk flank and hotter, broadly peaked dawn population.

6.
J Geophys Res Space Phys ; 124(11): 8647-8668, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32195073

RESUMO

This paper addresses the question of the contribution of azimuthally localized flow channels and magnetic field dipolarizations embedded in them in the global dipolarization of the inner magnetosphere during substorms. We employ the high-resolution Lyon-Fedder-Mobarry global magnetosphere magnetohydrodynamic model and simulate an isolated substorm event, which was observed by the geostationary satellites and by the Magnetospheric Multiscale spacecraft. The results of our simulations reveal that plasma sheet flow channels (bursty bulk flows, BBFs) and elementary dipolarizations (dipolarization fronts, DFs) occur in the growth phase of the substorm but are rare and do not penetrate to the geosynchronous orbit. The substorm onset is characterized by an abrupt increase in the occurrence and intensity of BBFs/DFs, which penetrate well earthward of the geosynchronous orbit during the expansion phase. These azimuthally localized structures are solely responsible for the global (in terms of the magnetic local time) dipolarization of the inner magnetosphere toward the end of the substorm expansion. Comparison with the geostationary satellites and Magnetospheric Multiscale data shows that the properties of the BBFs/DFs in the simulation are similar to those observed, which gives credence to the above results. Additionally, the simulation reveals many previously observed signatures of BBFs and DFs, including overshoots and oscillations around their equilibrium position, strong rebounds and vortical tailward flows, and the corresponding plasma sheet expansion and thinning.

7.
J Geophys Res Space Phys ; 123(8): 6360-6382, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31032166

RESUMO

Particle injection, a major mode of plasma transport and energization throughout the magnetosphere, has been studied for decades. Nonetheless, the physical processes that lead to the acceleration and transport of very energetic ions in the inner magnetosphere during injection events are still under debate. In this paper, we analyze several injection events occurring near the Van Allen Probes apogee. Our analysis shows that the highest energy of an injected ion population depends on the charge state of that population. We show that most of the helium injected is doubly ionized (He++), while oxygen charge states are consistent with the presence of both ionospheric (O+) and solar wind (O6+) source populations. Based on the findings of our data analysis and with the use of a simple model, we demonstrate that the behavior of each injection of energetic ions near the Van Allen Probes apogee (5 < L < 7 R E) is well explained by simple adiabatic or nearly adiabatic transport within flow channels from higher L (≥10 R E) with velocities at 10 R E ranging between ~200 and 2,000 km/s and falling with inward transport consistent with fixed potential drops across the flow channels. Gradient/curvature drift during transport limits the highest energy/charge observed for each injection at the Van Allen Probes. Even at the highest measured ion energies where gyroradius and scattering effects might be expected to appear, energization depends on charge state but not on ion mass.

8.
J Geophys Res Space Phys ; 120(4): 2543-2556, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27656334

RESUMO

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by orders of magnitude at different spatial and temporal scales. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of 17 March 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 h after the sudden storm commencement. For the analysis we used three-dimensional test particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the Magnetic Electron Ion Spectrometer experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

9.
Nature ; 507(7492): 338-40, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24646996

RESUMO

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

10.
J Geophys Res Space Phys ; 119(1): 163-170, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26167431

RESUMO

[1]Relativistic electron intensities in Earth's outer radiation belt can vary by multiple orders of magnitude on the time scales ranging from minutes to days. One fundamental process contributing to dynamic variability of radiation belt intensities is the radial transport of relativistic electrons across their drift shells. In this paper we analyze the properties of three-dimensional radial transport in a global magnetic field model driven by variations in the solar wind dynamic pressure. We use a test particle approach which captures anomalous effects such as drift orbit bifurcations. We show that the bifurcations lead to an order of magnitude increase in radial transport rates and enhance the energization at large equatorial pitch angles. Even at quiet time fluctuations in dynamic pressure, radial transport at large pitch angles exhibits strong deviations from the diffusion approximation. The radial transport rates are much lower at small pitch angle values which results in a better agreement with the diffusion approximation.

11.
J Geophys Res Space Phys ; 118(8): 4952-4962, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26167430

RESUMO

[1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz ), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz . We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA