Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 54(21): 13638-13650, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064475

RESUMO

Pesticides are widely used in agriculture despite their negative impact on ecosystems and human health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics and pesticide turnover with measurements of the abundance and expression of functional genes. To assess the advantages of informing models with genetic data, we developed a novel "gene-centric" model and compared model variants of differing structural complexity against a standard biomass-based model. The models were calibrated and validated using data from two batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating against data on pesticide mineralization, the gene-centric and biomass-based models performed equally well. However, accounting for pesticide-triggered gene regulation allows improved performance in capturing microbial dynamics and in predicting pesticide mineralization. This novel modeling approach also reveals a hysteretic relationship between pesticide degradation rates and gene expression, implying that the biodegradation performance in soils cannot be directly assessed by measuring the expression of functional genes. Our gene-centric model provides an effective approach for exploiting molecular biology data to simulate pesticide degradation in soils.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Praguicidas , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Humanos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Front Microbiol ; 11: 2107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983068

RESUMO

The objective of our study was to test whether limited microbial degradation at low pesticide concentrations could explain the discrepancy between overall degradability demonstrated in laboratory tests and their actual persistence in the environment. Studies on pesticide degradation are often performed using unrealistically high application rates seldom found in natural environments. Nevertheless, biodegradation rates determined for higher pesticide doses cannot necessarily be extrapolated to lower concentrations. In this context, we wanted to (i) compare the kinetics of pesticide degradation at different concentrations in arable land and (ii) clarify whether there is a concentration threshold below which the expression of the functional genes involved in the degradation pathway is inhibited without further pesticide degradation taking place. We set up an incubation experiment for four weeks using 14C-ring labeled 2-methyl-4-chlorophenoxyacetic acid (MCPA) as a model compound in concentrations from 30 to 20,000 µg kg-1 soil. To quantify the abundance of putative microorganisms involved in MCPA degradation and their degradation activity, tfdA gene copy numbers (DNA) and transcripts (mRNA) were determined by quantitative real-time PCR. Mineralization dynamics of MCPA derived-C were analyzed by monitoring 14CO2 production and 14C assimilation by soil microorganisms. We identified two different concentration thresholds for growth and activity with respect to MCPA degradation using tfdA gene and mRNA transcript abundance as growth and activity indices, respectively. The tfdA gene expression started to increase between 1,000 and 5,000 µg MCPA kg-1 dry soil, but an actual increase in tfdA sequences could only be determined at a concentration of 20,000 µg. Accordingly, we observed a clear shift from catabolic to anabolic utilization of MCPA-derived C in the concentration range of 1,000 to 5,000 µg kg-1. Concentrations ≥1,000 µg kg-1 were mainly associated with delayed mineralization, while concentrations ≤1,000 µg kg-1 showed rapid absolute dissipation. The persistence of pesticides at low concentrations cannot, therefore, be explained by the absence of functional gene expression. Nevertheless, significant differences in the degradation kinetics of MCPA between low and high pesticide concentrations illustrate the need for studies investigating pesticide degradation at environmentally relevant concentrations.

4.
Environ Microbiol Rep ; 9(6): 729-741, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892269

RESUMO

Root exudates shape microbial communities at the plant-soil interface. Here we compared bacterial communities that utilize plant-derived carbon in the rhizosphere of wheat in different soil depths, including topsoil, as well as two subsoil layers up to 1 m depth. The experiment was performed in a greenhouse using soil monoliths with intact soil structure taken from an agricultural field. To identify bacteria utilizing plant-derived carbon, 13 C-CO2 labelling of plants was performed for two weeks at the EC50 stage, followed by isopycnic density gradient centrifugation of extracted DNA from the rhizosphere combined with 16S rRNA gene-based amplicon sequencing. Our findings suggest substantially different bacterial key players and interaction mechanisms between plants and bacteria utilizing plant-derived carbon in the rhizosphere of subsoils and topsoil. Among the three soil depths, clear differences were found in 13 C enrichment pattern across abundant operational taxonomic units (OTUs). Whereas, OTUs linked to Proteobacteria were enriched in 13 C mainly in the topsoil, in both subsoil layers OTUs related to Cohnella, Paenibacillus, Flavobacterium showed a clear 13 C signal, indicating an important, so far overseen role of Firmicutes and Bacteriodetes in the subsoil rhizosphere.


Assuntos
Bactérias , Carbono/metabolismo , Rizosfera , Microbiologia do Solo , Solo/química , Triticum/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Nat Commun ; 8: 15858, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671181

RESUMO

The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B12-dependent biochemistry and represents an effective mode of RDase catalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Campylobacteraceae/enzimologia , Cobamidas/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Campylobacteraceae/química , Campylobacteraceae/genética , Campylobacteraceae/metabolismo , Catálise , Domínio Catalítico , Cobamidas/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Halogenação , Oxirredutases/genética , Vitamina B 12/química , Vitamina B 12/metabolismo
6.
J Environ Sci (China) ; 46: 116-25, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521943

RESUMO

In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.


Assuntos
Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental , Fungos/efeitos dos fármacos , Praguicidas/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Fungos/fisiologia , Fungicidas Industriais/análise , Fungicidas Industriais/toxicidade , Herbicidas/análise , Herbicidas/toxicidade , Inseticidas/análise , Inseticidas/toxicidade , Praguicidas/análise , Folhas de Planta , Poluentes Químicos da Água/análise
7.
Front Microbiol ; 6: 1269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635741

RESUMO

Microbial communities in soil provide a wide range of ecosystem services. On the small scale, nutrient rich hotspots in soil developed from the activities of animals or plants are important drivers for the composition of microbial communities and their functional patterns. However, in subsoil, the spatial heterogeneity of microbes with differing lifestyles has been rarely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in top- and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophic and copiotrophic microbes was assessed. Four bacterial clusters were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, representing mostly copiotrophic bacteria, were affiliated mainly to the rhizosphere and drilosphere-both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia, bacterial phyla which harbor many oligotrophic bacteria, were the most abundant groups in bulk subsoil. The bacterial core microbiome in this soil was estimated to cover 7.6% of the bacterial sequencing reads including both oligotrophic and copiotrophic bacteria. In contrast the archaeal core microbiome includes 56% of the overall archaeal diversity. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea build a stable backbone of the soil prokaryotes due to their low variability in the different soil compartments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA