Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 28(12): 1370-1378, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37479569

RESUMO

Indigenous and local knowledge (ILK) holders have deep ecological, horticultural, and practical knowledge of plants, but this knowledge is not routinely considered and supported along with seed collections conserved ex situ. In this opinion, conceived collaboratively by a team of botanists, ecologists, ethnobiologists, and practitioners in biodiversity and ILK systems conservation, we propose seven actions towards the co-conservation of seeds and associated knowledge to overcome obstacles and encourage ex situ conservation institutions to support knowledge holders in multiple ways. Success depends on simultaneous changes in conservation practices, new collaborative relationships, and shifts in policy to share and conserve biocultural diversity. Failure to act will witness the continued erosion of ILK and depreciation of ex situ plant collections.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Plantas , Sementes/genética , Conhecimento
2.
J Ethnobiol Ethnomed ; 18(1): 73, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572929

RESUMO

BACKGROUND: Medicinal plants and associated traditional knowledge play a vital role in supporting the livelihoods and resilience of indigenous communities. This ethnobotanical survey aims to identify medicinal plants used by the local communities of the Shouf Biosphere Reserve of Lebanon (SBR) and document the associated traditional knowledge. METHODOLOGY: Focus groups and personal interviews with 133 informants of community members of 22 villages of SBR were performed during 2019-2022. Informants were selected using purposive sampling techniques based on their knowledge of medicinal plants and experience in traditional herbal medicine. Interviews were conducted using a semi-structured questionnaire through field visits. RESULTS: Informants were equally represented by females and males and had different demographic characteristics, and the main source of knowledge was ancestral. A total of 184 medicinal plant species belonging to 57 families were documented. The predominant families were Asteraceae (31 spp.), Lamiaceae (14 spp.), and Rosaceae (14 spp.). Leaves (23%) were the plant part most used. Decoction (45%) was the predominant preparation method, while internal (oral) use (47%) was the most frequent administration mean. Berberis libanotica, Dittrichia viscosa, and Daucus carota achieved the highest scores of frequency of citation (FC), relative frequency of citation (RFC), use value (UV), and fidelity level (FL). Furthermore, diseases and ailments of gastrointestinal tract were the category most treated. CONCLUSIONS: Findings revealed a rich and diverse list of medicinal plants with associated traditional knowledge still actively used to treat a wide range of diseases. Future phytochemical and pharmacological studies are recommended to determine the efficacy and safety of plant species used. The management body of the SBR and all related authorities are invited to continue their conservation efforts to protect such rich biocultural heritage.


Assuntos
Plantas Medicinais , Masculino , Feminino , Humanos , Fitoterapia/métodos , Líbano , Conhecimentos, Atitudes e Prática em Saúde , Etnobotânica , Inquéritos e Questionários
3.
Ann Bot ; 130(6): 773-784, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36349952

RESUMO

BACKGROUND: Plant seeds have many traits that influence ecological functions, ex situ conservation, restoration success and their sustainable use. Several seed traits are known to vary significantly between tropical and temperate regions. Here we present three additional traits for which existing data indicate differences between geographical zones. We discuss evidence for geographical bias in availability of data for these traits, as well as the negative consequences of this bias. SCOPE: We reviewed the literature on seed desiccation sensitivity studies that compare predictive models to experimental data and show how a lack of data on populations and species from tropical regions could reduce the predictive power of global models. In addition, we compiled existing data on relative embryo size and post-dispersal embryo growth and found that relative embryo size was significantly larger, and embryo growth limited, in tropical species. The available data showed strong biases towards non-tropical species and certain families, indicating that these biases need to be corrected to perform truly global analyses. Furthermore, we argue that the low number of seed germination studies on tropical high-mountain species makes it difficult to compare across geographical regions and predict the effects of climate change in these highly specialized tropical ecosystems. In particular, we show that seed traits of geographically restricted páramo species have been studied less than those of more widely distributed species, with most publications unavailable in English or in the peer-reviewed literature. CONCLUSIONS: The low availability of functional seed trait data from populations and species in the tropics can have negative consequences for macroecological studies, predictive models and their application to plant conservation. We propose that global analyses of seed traits with evidence for geographical variation prioritize generation of new data from tropical regions as well as multi-lingual searches of both the grey- and peer-reviewed literature in order to fill geographical and taxonomic gaps.


Assuntos
Ecossistema , Sementes , Plantas
4.
Plants (Basel) ; 11(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336626

RESUMO

Wild Edible Plants (WEPs) still play a vital role in the subsistence of many traditional communities, while they are receiving increasing recognition in tackling food security and nutrition at the international level. This paper reviews the use patterns of native WEPs in Chile and discusses their role as future crops and sources of food products. We conducted an extensive literature review by assessing their taxonomic diversity, life forms, consumption and preparation methods, types of use (traditional and modern), and nutritional properties. We found that 330 native species were documented as food plants, which represent 7.8% of the total flora of Chile. These species belong to 196 genera and 84 families. The most diverse families are Asteraceae (34), Cactaceae (21), Fabaceae (21), Solanaceae (20) and Apiaceae (19), and the richest genera in terms of number of species are Solanum (9), Ribes (8), Berberis (7), Hypochaeris (7) and Oxalis (6). Perennial herbs are the predominant life form (40%), followed by shrubs (35%), trees (14%), and annual and biannual herbs (11%). Fruits (35.8%), roots (21.5%) and leaves (20.0%) are the parts of plants consumed the most. Nine different food preparation categories were identified, with 'raw' forming the largest group (43%), followed by 'beverages' (27%), 'savoury preparations' (27%), and 'sweet' (13%). Almost all native Chilean WEPs have reported traditional food uses, while only a few of them have contemporary uses, with food products mainly sold in local and specialised markets. Species' richness, taxonomic diversity and family representation have similar patterns to those observed for the world flora and other countries where surveys have been carried out. Some Chilean native WEPs have the potential to become new crops and important sources of nutritious and healthy products in the food industry. However, there are still many gaps in knowledge about their nutritional, anti-nutritional and biochemical characteristics; future research is recommended to unveil their properties and potential uses in agriculture and the food industry.

5.
Nat Plants ; 8(3): 225-232, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210559

RESUMO

With more than two billion people suffering from malnutrition and diets homogenizing globally, it is vital to identify and conserve nutrient-rich species that may contribute to improving food security and diversifying diets. Of the approximately 390,000 vascular plant species known to science, thousands have been reported to be edible, yet their nutritional content remains poorly characterized. Here we use phylogenetic information to identify plants with the greatest potential to support strategies alleviating B-vitamin deficiencies. We predict the B-vitamin profiles of >6,400 edible plants lacking nutritional data and identify 1,044 species as promising key sources of B vitamins. Several of these source species should become conservation priorities, as 63 (6%) are threatened in the wild and 272 (26%) are absent from seed banks. Moreover, many of these conservation-priority source species overlap with hotspots of malnutrition, highlighting the need for safeguarding strategies to ensure that edible plant diversity remains a reservoir of nutrition for future generations, particularly in countries needing it most. Although by no means a silver bullet to tackling malnutrition, conserving a diverse portfolio of edible plants, unravelling their nutritional potentials, and promoting their sustainable use are essential strategies to enhance global nutritional resilience.


Assuntos
Desnutrição , Micronutrientes , Humanos , Estado Nutricional , Filogenia , Plantas Comestíveis
6.
Trends Plant Sci ; 27(2): 139-146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34556418

RESUMO

Halting and reversing the current loss of biodiversity and habitats will be facilitated by a comprehensive valuation of all nature's contributions to people (NCPs), on which we rely. In this context, we explore the full natural capital value of seeds to reveal how this extends far beyond their economic value associated with mainstream agriculture and forestry. Seeds represent the main assets for nature-based solutions at species (i.e., unlocking neglected species properties and via seed banking) and ecosystem level (i.e., ecological restoration). Challenges remain to enhance their sustainable use in nature conservation and in supporting a sustainable development model. Such advances will depend on the comprehensive valuation of the natural capital value of seeds, which has so far been grossly underestimated.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Conservação dos Recursos Naturais , Agricultura Florestal , Sementes
7.
Plants (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616279

RESUMO

Cedrela odorata is a native tree of economic importance, as its wood is highly demanded in the international market. In this work, the current and future distributions of C. odorata in Mexico under climate change scenarios were analyzed according to their optimal temperature ranges for seed germination. For the present distribution, 256 localities of the species' presence were obtained from the Global Biodiversity Information Facility (GBIF) database and modelled with MaxEnt. For the potential distribution, the National Center for Atmospheric Research model (CCSM4) was used under conservative and drastic scenarios (RCP2.6 and RCP8.5 Watts/m2, respectively) for the intermediate future (2050) and far future (2070). Potential distribution models were built from occurrence data within the optimum germination temperature range of the species. The potential distribution expanded by 5 and 7.8% in the intermediate and far future, respectively, compared with the current distribution. With the increase in temperature, adequate environmental conditions for the species distribution should be met in the central Mexican state of Guanajuato. The states of Chihuahua, Mexico, Morelos, Guerrero, and Durango presented a negative trend in potential distribution. Additionally, in the far future, the state of Chihuahua it is likely to not have adequate conditions for the presence of the species. For the prediction of the models, the precipitation variable during the driest month presented the greatest contribution. When the humidity is not limiting, the thermal climatic variables are the most important ones. Models based on its thermal niche for seed germination allowed for the identification of areas where temperature will positively affect seed germination, which will help maximize the establishment of plant populations and adaptation to different climate change scenarios.

8.
Plants (Basel) ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34834734

RESUMO

There is a pressing need to conserve plant diversity to prevent extinctions and to enable sustainable use of plant material by current and future generations. Here, we review the contribution that living collections and seed banks based in botanic gardens around the world make to wild plant conservation and to tackling global challenges. We focus in particular on the work of Botanic Gardens Conservation International and the Millennium Seed Bank of the Royal Botanic Gardens, Kew, with its associated global Partnership. The advantages and limitations of conservation of plant diversity as both living material and seed collections are reviewed, and the need for additional research and conservation measures, such as cryopreservation, to enable the long-term conservation of 'exceptional species' is discussed. We highlight the importance of networks and sharing access to data and plant material. The skill sets found within botanic gardens and seed banks complement each other and enable the development of integrated conservation (linking in situ and ex situ efforts). Using a number of case studies we demonstrate how botanic gardens and seed banks support integrated conservation and research for agriculture and food security, restoration and reforestation, as well as supporting local livelihoods.

9.
Plants (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34834741

RESUMO

Swietenia macrophylla is an economically important tree species propagated by seeds that lose their viability in a short time, making seed germination a key stage for the species recruitment. The objective of this study was to determine the cardinal temperatures and thermal time for seed germination of S. macrophylla; and its potential distribution under different climate change scenarios. Seeds were placed in germination chambers at constant temperatures from 5 to 45 °C and their thermal responses modelled using a thermal time approach. In addition, the potential biogeographic distribution was projected according to the Community Climate System Model version 4 (CCSM4). Germination rate reached its maximum at 37.3 ± 1.3 °C (To); seed germination decreased to near zero at 52.7 ± 2.2 °C (ceiling temperature, Tc) and at 12.8 ± 2.4 °C (base temperature, Tb). The suboptimal thermal time θ150 needed for 50% germination was ca. 190 °Cd, which in the current scenario is accumulated in 20 days. The CCSM4 model estimates an increase of the potential distribution of the species of 12.3 to 18.3% compared to the current scenario. The temperature had an important effect on the physiological processes of the seeds. With the increase in temperature, the thermal needs for germination are completed in less time, so the species will not be affected in its distribution. Although the distribution of the species may not be affected, it is crucial to generate sustainable management strategies to ensure its long-term conservation.

10.
Ann Bot ; 127(3): 361-370, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33090204

RESUMO

BACKGROUND AND AIMS: The structure of plant communities, which is based on species abundance ratios, is closely linked to ecosystem functionality. Seed germination niche plays a major role in shaping plant communities, although it has often been neglected when explaining species coexistence. The aim of this work is to link the seed germination niche to community ecology, investigating how functional seed traits contribute to species coexistence. METHODS: Species selection was based on a database of 504 vegetation surveys from the Veneto coast (Italy). Through cluster analysis we identified the foredune community and selected all of its 19 plant species. By using the 'Phi coefficient' and frequency values, species were pooled in different categories (foundation species, accidental species of the semi-fixed dune and aliens), then the 19 species were grouped according to their germination responses to temperature and photoperiod through cluster analyses. For each germination cluster, we investigated germination trends against temperature and photoperiod by using generalized linear mixed models. KEY RESULTS: We identified four germination strategies: (1) high germination under all tested conditions ('high-germinating'); (2) high germination at warm temperatures in the dark ('dark warm-cued'); (3) high germination at warm temperatures in the light ('light warm-cued'); and (4) low germination, regardless of conditions ('low-germinating'). Foredune foundation species showed a narrow germination niche, being 'low-germinating' or 'dark warm-cued'. Annual species of semi-fixed dunes were 'high-germinating', while alien species were the only members of the 'light warm-cued' cluster. CONCLUSIONS: Our research suggests that different categories of species have dissimilar seed germination niches, which contributes to explaining their coexistence. Climatic events, such as rising temperature, could alter germination patterns, favouring seed regeneration of certain categories (i.e. alien and semi-fixed dune species) at the expense of others (i.e. foundation species, pivotal to ecosystem functioning), and hence potentially altering the plant community structure.


Assuntos
Ecossistema , Germinação , Itália , Sementes , Temperatura
11.
Plants (Basel) ; 9(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019632

RESUMO

Overlooked in national reports and in conservation programs, wild food plants (WFPs) have been a vital component of food and nutrition security for centuries. Recently, several countries have reported on the widespread and regular consumption of WFPs, particularly by rural and indigenous communities but also in urban contexts. They are reported as critical for livelihood resilience and for providing essential micronutrients to people enduring food shortages or other emergency situations. However, threats derived from changes in land use and climate, overexploitation and urbanization are reducing the availability of these biological resources in the wild and contributing to the loss of traditional knowledge associated with their use. Meanwhile, few policy measures are in place explicitly targeting their conservation and sustainable use. This can be partially attributed to a lack of scientific evidence and awareness among policymakers and relevant stakeholders of the untapped potential of WFPs, accompanied by market and non-market barriers limiting their use. This paper reviews recent efforts being undertaken in several countries to build evidence of the importance of WFPs, while providing examples of cross-sectoral cooperation and multi-stakeholder approaches that are contributing to advance their conservation and sustainable use. An integrated conservation approach is proposed contributing to secure their availability for future generations.

12.
PeerJ ; 8: e9898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999763

RESUMO

BACKGROUND: Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. METHODS: A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e. endemic status, threat status, availability in seed collections, reports on plant uses and conservation actions currently in place. With this information, a comprehensive catalogue of native trees from Mexico was redacted. Available georeferenced records were used to map each species distribution and perform spatial analyses to identify gaps of information and priority areas for their conservation and exploration. RESULTS: Mexico has at least 2,885 native tree species, belonging to 612 genera and 128 families. Fabaceae is the most represented family and Quercus the most represented genus. Approximately 44% of tree species are endemic to the country. The southern part of the country showed the highest values of species richness. Six hundred and seventy-four species have at least one documented human use. In terms of conservation assessment, ca. 33% of species have been assessed by either the IUCN Red List (919) or the National protection catalogue "NORMA Oficial Mexicana NOM-059" (29) or both (45). Additionally, 98 species have been included in the CITES listing for protection. In terms of existing conservation efforts, 19% of species have ex situ protection in seed banks, while protected areas overlap with all the identified peaks of species richness, except for those in the states of Veracruz and Chiapas. This work constitutes a key milestone for the knowledge, management, and conservation of the Mexican native trees. The two areas with high density of tree species identified in Veracruz and Chiapas represent two priority areas for tree conservation in Mexico, where integrated in situ and ex situ conservation efforts should be focused.

13.
Glob Chang Biol ; 23(12): 5309-5317, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28657127

RESUMO

Recruitment from seeds is among the most vulnerable stage for plants as global temperatures change. While germination is the means by which the vast majority of the world's flora regenerate naturally, a framework for accurately predicting which species are at greatest risk of germination failure during environmental perturbation is lacking. Taking a physiological approach, we assess how one family, the Cactaceae, may respond to global temperature change based on the thermal buffering capacity of the germination phenotype. We selected 55 cactus species from the Americas, all geo-referenced seed collections, reflecting the broad environmental envelope of the family across 70° of latitude and 3700 m of altitude. We then generated empirical data of the thermal germination response from which we estimated the minimum (Tb ), optimum (To ) and ceiling (Tc ) temperature for germination and the thermal time (θ50 ) for each species based on the linearity of germination rate with temperature. Species with the highest Tb and lowest Tc germinated fastest, and the interspecific sensitivity of the germination rate to temperature, as assessed through θ50 , varied tenfold. A left-skewed asymmetry in the germination rate with temperature was relatively common but the unimodal pattern typical of crop species failed for nearly half of the species due to insensitivity to temperature change at To . For 32 fully characterized species, seed thermal parameters correlated strongly with the mean temperature of the wettest quarter of the seed collection sites. By projecting the mean temperature of the wettest quarter under two climate change scenarios, we predict under the least conservative scenario (+3.7°C) that 25% of cactus species will have reduced germination performance, whilst the remainder will have an efficiency gain, by the end of the 21st century.


Assuntos
Adaptação Fisiológica , Cactaceae/fisiologia , Germinação , Temperatura , Altitude , Cactaceae/crescimento & desenvolvimento , Mudança Climática , Modelos Teóricos , Fenótipo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA