RESUMO
Seed longevity is crucial for long-term storage, but prolonged unfavorable conditions can lead to viability loss. This study integrated theoretical and experimental techniques to elucidate the inherent mechanisms underlying the unique ability of lotus seed capacity to maintain stable viability even after enduring years. Transcriptome analysis and microscopy revealed the sturdy structure of the lotus seed pericarp, which predominantly expressed cellulose synthase genes involved in cell wall biogenesis. The cotyledon serves as a nutrient source for seeds during long-term storage. Additionally, the inactivation of chlorophyll degradation pathways may allow for the retention of chlorophyll in the lotus seed plumule, potentially enhancing the environmental adaptability of lotus seedlings. While the reduced abundance of transcripts corresponding to heat shock protein genes could impact protein processing and consequently diminish the vitality of aging lotus seeds. Moreover, an expansion in the number of seed maturation and defense response genes was observed in the lotus genome compared to other 11 species, which might represent an adaptive strategy against long-term adverse storage conditions. Overall, these findings are crucial for understanding the mechanisms underlying lotus seed longevity and may inform future improvements in the extended storage periods of seed crops.
RESUMO
BACKGROUND: Transcatheter aortic valve implantation (TAVI) is a growing treatment for aortic stenosis, but anatomical variations exist across populations. Asians tend to have smaller aortic annuli and higher bicuspid valve morphology compared to Westerners, potentially impacting TAVI valve selection and outcomes. This study analyzes aortic root parameters in Pakistani patients undergoing TAVI. RESULTS: We conducted a retrospective analysis of 78 patients who underwent TAVI at the Peshawar Institute of Cardiology from January 2021 to March 2024. Pre-procedural CT scans were analyzed for aortic annulus diameters, area, and other relevant parameters. The mean age was 72.41 years (SD ± 11.99), and 61.5% were male. Aortic annulus diameters (minimum, mean, maximum) were 21.18 mm (SD ± 3.99), 24.21 mm (SD ± 3.93), and 27.49 mm (SD ± 4.43), respectively. Bicuspid aortic valves were present in 34.61% of patients. CONCLUSIONS: Our findings suggest that Pakistani patients undergoing TAVI may have aortic root dimensions comparable to Western populations, with a substantial prevalence of bicuspid valves. However, coronary heights were similar to those reported in Asian populations with smaller annuli. Further studies are needed to assess TAVI outcomes in Pakistani patients and determine if tailored valve sizing strategies are required.
RESUMO
Background and Objectives: Rivaroxaban is a direct-acting anticoagulant used to prevent stroke in patients with atrial fibrillation. Rivaroxaban is a substrate for P-glycoprotein, which is encoded by the ABCB1 gene. Rivaroxaban is also metabolized by the CYP3A5 gene. Therefore, the current study is carried out to study the effects of polymorphisms in the ABCB1 and CYP3A5 genes, which may affect the plasma levels of rivaroxaban, with subsequent clinical outcomes (bleeding events) associated with the therapy. Materials and Methods: The study was conducted on 66 naive patients with atrial fibrillation treated with rivaroxaban. Blood samples of rivaroxaban were taken at 3 h and after 1 month following the administration of the drug to measure plasma levels. The blood level of rivaroxaban was measured with an HPLC-UV detector. Sanger sequencing was used to find polymorphisms in the targeted genes. Coagulation parameters were measured at 3 h and after 1 month of administration of rivaroxaban. Frequencies of bleeding events were recorded throughout the one-month course of drug therapy. Results: The heterozygous and homozygous mutant genotypes of ABCB1 (rs2032582, rs1045642, rs1128503, and rs4148738) and CYP3A5 (rs776746) showed lower plasma concentrations as compared to the wild-type genotype. ABCB1 (rs2032582, rs1045642, rs1128503, and rs4148738) and CYP3A5 (rs776746) gene polymorphisms had a statistically significant impact on the plasma concentration of rivaroxaban among the heterozygous and homozygous mutant genotypes compared to the wild-type genotype. The heterozygous variant of ABCB1 and homozygous variant of CYP3A5 suffered more events of bleeding. Conclusions: It was concluded that ABCB1 (rs2032582, rs1045642, rs1128503, and rs4148738) and CYP3A5 (rs776746) gene polymorphisms had a significant impact on the plasma levels of rivaroxaban in patients treated for atrial fibrillation on day three as well as after one month of the therapy. The lowest plasma levels were observed in patients with a homozygous variant of ABCB1 (rs2032582, rs1045642, or rs4148738) along with the CYP3A5*1/*3 allele. The heterozygous variant of ABCB1 SNPs and homozygous variant of CYP3A5 SNPs suffered more events of bleeding.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Fibrilação Atrial , Citocromo P-450 CYP3A , Hemorragia , Rivaroxabana , Humanos , Rivaroxabana/uso terapêutico , Rivaroxabana/farmacocinética , Rivaroxabana/efeitos adversos , Rivaroxabana/sangue , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Fibrilação Atrial/complicações , Masculino , Feminino , Hemorragia/induzido quimicamente , Pessoa de Meia-Idade , Idoso , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Estudos Longitudinais , Citocromo P-450 CYP3A/genética , Coeficiente Internacional Normatizado , Seguimentos , Inibidores do Fator Xa/uso terapêutico , Inibidores do Fator Xa/farmacocinética , Inibidores do Fator Xa/sangue , Genótipo , Polimorfismo Genético , Anticoagulantes/uso terapêutico , Anticoagulantes/efeitos adversos , Anticoagulantes/farmacocinéticaRESUMO
Plants face multiple challenges from environmental pollutants and higher emissions of atmospheric CO2. Therefore, a hydroponic-based experiment was used to explore the combined effects of elevated [CO2] (700 ppm) and exogenous cyanide (CN-) (3.0mg CN/L) on rice seedlings under nitrogen deficiency, utilizing metabonomics and transcriptomic analysis. Elevated [CO2] significantly improved the growth of CN--treated rice seedlings compared to those with ambient [CO2] (350 ppm), and it also significantly affected CN- assimilation. Transcriptome analysis revealed distinct impacts on differentially expressed genes (DEGs) across treatments and tissues. KEGG analysis showed variability in DEGs enriched in amino acid (AA) and energy metabolism pathways due to elevated [CO2] and CN-. Metabonomics indicated that higher input of [CO2] and exogenous CN- more severely impacted energy metabolism elements than the individual species of AAs. Positive synergistic effects of elevated [CO2] and CN- were observed for glutamine and asparagine in shoots, and methionine in roots, wherein negative effects were noted for phenylalanine in shoots, and phenylalanine, valine, and alanine in roots. Meanwhile, positive effects on fumarate in shoots and α-ketoglutarate and succinate in roots were also found. Overall, elevated [CO2] enhances growth in CN--treated rice seedlings under nitrogen deficiency by altering AA and energy metabolism. This is the first attempt to provide new evidence of [CO2]-based gaseous fertilization as an energy-saving strategy for rice plants fed with biodegradable N-containing pollutants as a supporting N source under N deficient conditions.
RESUMO
Heavy metals (HMs) contamination has gained much attention due to its high degree of toxicity for living organisms. Therefore, different techniques are underway to eradicate HMs from the environment. Among the biological techniques, phytoremediation is a suitable method, but owing to the slow rate and chance of HMs penetration into the food chain, alternative techniques are needed to reduce their phytotoxicity, and biochar is one of them. Due to the diverse characteristics, biochar immobilizes HMs in the soil by improving soil pH, ion exchange, electrostatic interactions, complexation, precipitation, surface adsorption, and microbial activation. Thereby, amendment of biochar in the HMs-contaminated soils reduces HMs toxicity to plants and limits their penetration into the food chain. In contrast, some biochars have also been studied to induce metal availability in soils and subsequently its uptake by plants. This dual role of biochar depends on the feedstock of biochar, incineration temperature, and the rate of application. Moreover, biochar treatments enhance plant growth under HMs stress by improving nutrient availability, water retention capacity, scavenging of reactive oxygen species, and photosynthetic efficiency. Owing to the beneficial characteristics of biochar in HMs-contaminated sites, the number of publications has tremendously increased. Additionally, the plant species and the types of HMs that have been tested frequently under biochar treatments in these articles have been studied. Overall, the current study would help in understanding the mechanisms of how biochar influences phytoremediation of HMs and improves plant growth in HMs-polluted soils and the current scenario of the available literature.
RESUMO
Potential toxic element (PTE) pollution has emerged as a significant environmental and social concern in global agriculture. Chromium (Cr) occurs in different oxidation states naturally, among them Cr(VI), which is highly toxic. This study carried out biochemical and molecular tests to elucidate the accumulation of total soluble phenolics (TSPs) in rice plants exposed to Cr(VI) at 2.0, 8.0, and 16.0 mg Cr/L, emphasizing the interaction between polyamines (PAs) and abscisic acid (ABA). The results revealed significant Cr accumulation in different tissues of rice plants, which hindered their growth. Cr(VI) exposure increased the ABA concentration, with higher levels detected in the shoots than in the roots. The TSP concentration in rice tissues showed a positive relationship with the supplied concentrations of Cr(VI). The measured PAs, including spermine (Spm), putrescine (Put), and spermidine (Spd), exhibited varied responses to Cr(VI) stress, with only Spm concentration increasing with Cr(VI) concentrations. Real-time qRT-PCR showed PAs and ABA synthesis-associated genes such as OsADC1, OsAIH, OsCPA1, and OsCPA4 were significantly up-regulated in shoot of rice plants treated with Cr(VI). These genes are associated with the second pathway of Put synthesis, originating from Arg. Almost all genes activated in the Met pathway were significantly up-regulated as well. Moreover, the genes involved in the interconversion among the three species of PAs exhibited completely different responses to Cr(VI) exposure. Overall, the biochemical analysis and gene expression data indicate that the interaction between ABA and Spm is likely to enhance the TSP levels in rice plants subjected to Cr(VI) toxicity.
RESUMO
Diabetes, also known as diabetes mellitus (DM), is a metabolic disorder characterized by an abnormal rise in blood sugar (glucose) levels brought on by a complete or partial lack of insulin secretion along with corresponding changes in the metabolism of lipids, proteins, and carbohydrates. It has been reported that medicinal plants play a pivotal role in the treatment of various ailments such as diabetes mellitus, dyslipidemia, and hypertension. The current study involved exploring the acute toxicity and in vivo antidiabetic activity of berberine (WA1), palmatine (WA2), and 8-trichloromethyl dihydroberberine (WA3) previously isolated from Berberis glaucocarpa Stapf using a streptozotocin (STZ)-induced diabetic rat model. Body weight and blood glucose level were assessed on a day interval for 4 weeks. Biochemical parameters, antioxidant enzymes, and oxidative stress markers were also determined. In an acute toxicity profile, the WA1, WA2, and WA3 were determined to be nontoxic up to 500 mg/kg (b.w). After the second and third weeks of treatment (14 and 21 days), the blood glucose levels in the WA1-, WA2-, and WA3-treated groups were significantly lower than those in the diabetic control group (476.81 ± 8.65 mg/dL, n = 8, P < 0.001). On the 21st day, there was a decrease in the blood glucose level and the results obtained were 176.33 ± 4.69, 197.21 ± 4.80, and 161.99 ± 4.75 mg/dL (n = 8, P < 0.001) for WA1, WA2, and WA3 at 12 mg/kg, respectively, as opposed to the diabetic control group (482.87 ± 7.11 mg/dL, n = 8, P < 0.001). Upon comparison with the diabetic group at the end of the study (28 days), a substantial drop in the glucose level of WA3 at 12 mg/kg (110.56 ± 4.11 mg/dL, n = 8, P < 0.001) was observed that was almost near the values of the normal control group. The treated groups (WA1, WA2, and WA3) treated with the samples displayed a significant decline in the levels of HbA1c. Treatment of the samples dramatically lowered the lipid level profile. In groups treated with samples, plasma levels of triglycerides, total cholesterol, and LDL were significantly lowered [F (5, 42) = 100.6, n = 8, P < 0.001]; these levels were also significantly decreased [F (5, 42) = 129.6 and 91.17, n = 8, P < 0.001]. In contrast to the diabetes group, all treated groups had significantly higher HDL levels [F (5, 42) = 15.46, n = 8, P < 0.001]. As a result, hypolipidemic activity was anticipated in the samples. In addition to that, the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) was considerably elevated in the groups treated with the sample compared to the diabetic control group (n = 8, P < 0.001).
RESUMO
Gallium (Ga) is an emerging chemical pollutant chiefly associated with high-tech industries. Boron (B) alleviates the negative effects of toxic elements on plant growth. Thereby, the effects of B fertilization on Ga toxicity in rice seedlings was studied to clarify the role of iron plaque in the distribution of Ga, Fe, and B in Ga-treated rice seedlings in the presence or absence of B. Gallium exposure significantly reduced the biomass of rice seedlings. Boron deficiency induced a significant change in the distribution of B in Ga-treated rice seedlings compared with "Ga+B" treatments. Accumulation of Ga in roots, dithionite-citrate-bicarbonate (DCB) extracts, and shoots showed a dose-dependent manner from both +B and -B rice seedlings. Boron nutrition levels affect the distribution of Fe in roots, DCB extracts, and shoots, in which DCB-extractable Fe was significantly decreased from "Ga-B" treatments compared with "Ga+B" treatments. Root activity was significantly decreased in both Ga-exposed rice seedlings; however, B-deficient seedlings showed a severe reduction than +B rice seedlings. These results reveal that Fe plaque might be a temporary sink for B accumulation when plants are grown with proper B, wherein the re-utilization of DCB-extractable B stored in Fe plaque is mandatory for plant growth under B deficiency. Correlation analysis revealed that B deficiency decreased the root activity of Ga-exposed rice seedlings by reducing DCB-extractable Fe and increasing DCB-extractable Ga in Fe plaque. This study enhances our understanding of how B nutritional levels affect Ga toxicity in rice plants.
Assuntos
Gálio , Oryza , Poluentes do Solo , Plântula , Ferro , Boro/toxicidade , Boro/análise , Gálio/farmacologia , Raízes de Plantas , Citratos/farmacologia , Ácido Cítrico/farmacologia , Poluentes do Solo/toxicidadeRESUMO
The effect of boron (B) deficiency on mediating the contribution of H+-ATPase in the uptake and assimilation of exogenous cyanide (CN-) is investigated. Under CN- treatments, rice seedlings with B-deficient (-B) conditions exhibited significantly higher CN- uptake and assimilation rates than B-supplemented (+B) seedlings, whereas NH4+ uptake and assimilation rates were slightly higher in -B rice seedlings than in +B. In this connection, the expression pattern of genes encoding ß-CAS, ST, and H+-ATPase was assessed to unravel their role in the current scenario. The abundances of three ß-CAS isogenes (OsCYS-D1, OsCYS-D2, and OsCYS-C1) in rice tissues are upregulated from both "CN--B" and "CN-+B" treatments, however, only OsCYS-C1 in roots from the "CN--B" treatments was significantly upregulated than "CN-+B" treatments. Expression patterns of ST-related genes (OsStr9, OsStr22, and OsStr23) are tissue specific, in which significantly higher upregulation of ST-related genes was observed in shoots from "CN--B" treatments than "CN-+B" treatments. Expression pattern of 7 selected H+-ATPase isogenes, OsA1, OSA2, OsA3, OsA4, OsA7, OsA8, and OsA9 are quite tissue specific between "CN-+B" and "CN--B" treatments. Among these, OsA4 and OsA7 genes were highly activated in the uptake and assimilation of exogenous CN- in -B nutrient solution. These results indicated that B deficiency disturbs the pattern of N cycles in CN--treated rice seedlings, where activation of ST during CN- assimilation decreases the flux of the innate pool of NH4+ produced from CN- assimilation by the ß-CAS pathway in plants. Collectively, the B deficiency increased the uptake and assimilation of exogenous CN- through activating H+-ATPase.
Assuntos
Cianetos , Oryza , Oryza/metabolismo , Boro/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/farmacologia , Plântula/metabolismo , Membrana Celular , Raízes de Plantas/metabolismoRESUMO
Root architecture is the temporal and spatial configuration of root system in the heterogeneous matrix of soil that is prone to chemical stresses. Gallium (Ga) is among the emerging chemical pollutants that are mostly associated with high-tech industries, specifically associated with semiconductors. In view of its potential risk and increasing distribution in the environment, this study was designed to evaluate the inhibition rate, Ga distribution in different tissues, and root architecture of rice seedlings under different concentrations of Ga. We observed that 2.59, 46.7, and 168.2 mg Ga/L were minimum (EC20), medium (EC50), and maximum (EC75) effective concentrations for rice plants that corresponded to the 20, 50, and 75% inhibition on the relative growth rate, respectively. Distribution of Ga in rice tissues showed that accumulation of Ga was much higher in roots than shoots of rice seedlings, and it increased with an increase in Ga doses. Evan blue staining technique reveals that the number of damaged/dead cell was dose-dependent on Ga. Moreover, several traits associated with root system architecture demonstrating that rice root system architecture altered in response to Ga stress. Collectively, the results reveal that Ga exposure inhibited the growth and development of rice plants. This study will enhance our understanding that how different concentrations of Ga in the environment can affect plants; however, more comprehensive studies are essential to further determine plant response against Ga stress.
Assuntos
Poluentes Ambientais , Gálio , Oryza , Raízes de Plantas , Plântula , Poluentes Ambientais/farmacologiaRESUMO
Gitelman syndrome (GS) is a rare autosomal recessive salt-losing renal tubular disorder associated with a mutation of SLC12A3 or CLCNKB genes which encodes the thiazide-sensitive sodium-chloride co-transporter (NCCT) in the distal renal tubule. It is inherited as an autosomal recessive disorder. Hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria, and renin-angiotensin-aldosterone system (RAAS) activation are characteristics of GS. GS is often misdiagnosed or underdiagnosed owing to its low incidence and lack of awareness. Its prevalence is estimated to be around 1-10 per 40,000 people. We report a case of cardiac arrest secondary to torsade de pointes (TdP) because of GS-induced hypomagnesemia. Our case highlights the importance of clinicians being aware of the potential electrolyte abnormalities and complications associated with GS, as it can lead to catastrophic consequences if not identified and corrected earlier.
RESUMO
Background and Objectives: We have recently reported that Fluvastatin, Atorvastatin, Simvastatin and Rosuvastatin have calcium channel antagonistic activities using rabbits' intestinal preparations. The current study is focused on the effects of Pitavastatin and Lovastatin for possible inhibition of vascular L-Type calcium channels, which may have vasorelaxant effect(s). Combined effects of Pitavastatin and Lovastatin in the presence of Amlodipine were also tested for vasorelaxation. Materials and Methods: Possible relaxing effects of Pitavastatin and Lovastatin on 80 mM Potassium chloride (KCL)-induced contractions and on 1 µM norepinephrine (N.E)-induced contractions were studied in isolated rabbit's aortic strips preparations. Relaxing effects on 80 mM KCL-induced vascular contractions were further verified by constructing Calcium Concentration Response Curves (CCRCs), in the absence and presence of three different concentrations of Pitavastatin and Lovastatin using CCRCs as negative control. Verapamil was used as a standard drug that has L-Type calcium channel binding activity. In other series of experiments, we studied drug interaction(s) among Pitavastatin, Lovastatin, and amlodipine. Results: The results of this study imply that Lovastatin is more potent than Pitavastatin for having comparatively lower EC50 (7.44 × 10-5 ± 0.16 M) in intact and (4.55 × 10-5 ± 0.10 M) in denuded aortae for KCL-induced contractions. Lovastatin amplitudes in intact and denuded aortae for KCL-induced contractions were, respectively, 24% and 35.5%; whereas amplitudes for Pitavastatin in intact and denuded aortae for KCL-induced contractions were 34% and 40%, respectively. A left shift in the EC50 values for the statins was seen when we added amlodipine in EC50 (Log Ca++ M). Right shift for CCRCs state that Pitavastatin and Lovastatin have calcium channel antagonistic effects. Lovastatin in test concentration (6.74 × 10-7 M) produced a right shift in relatively lower EC50 (-2.5 ± 0.10) Log Ca++ M as compared to Pitavastatin, which further confirms that lovastatin is relatively more potent. The right shift in EC50 resembles the right shift of Verapamil. Additive effect of Pitavastatin and Lovastatin was noted in presence of amlodipine (p < 0.05). Conclusions: KCL (80 mM)-induced vascular contractions were relaxed by Pitavastatin and Lovastatin via inhibitory effects on L-Type voltage-gated calcium channels. Lovastatin and Pitavastatin also relaxed Norepinephrine (1 µM)-induced contractions giving an insight for involvement of dual mode of action of Pitavastatin and Lovastatin.
Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Vasodilatadores , Animais , Coelhos , Anlodipino/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Verapamil/farmacologia , Norepinefrina/farmacologiaRESUMO
This study is carried out to assess the effects of rosuvastatin and simvastatin on blood vessels for possible vasorelaxant effect. The study is also translating the possible vasorelaxant effect in Wistar rats for a subsequent fall in systolic blood pressure. It is evident from the EC50, that rosuvastatin is more effective on relaxing N.E induced contractions, while simvastatin is more effective on relaxing KCL induced contractions. Simvastatin is equipotent when compared to effects of amlodipine on KCl induced contractions in denuded aortae. Simvastatin produced significant right shift in test concentration 1.1× 10-6M with its respective EC50 -1.85logCa++M as compared to its respective control EC50 -3logCa++M. Rosuvastatin also produced significant right shift in the EC50. In conclusion, it is stated that rosuvastatin and simvastatin relax the aortic strips preparations through inhibition of voltage gated calcium channels and inhibition of N.E induced contractions. Rosuvastatin and simvastatin have additive effects when used in the presence of a standard vaso-relaxant drug like amlodipine, which further confirms its additive effect on decreasing the systolic blood pressure of hypertensive rats (P<0.05).
Assuntos
Anlodipino , Anti-Hipertensivos , Animais , Ratos , Ratos Wistar , Anti-Hipertensivos/farmacologia , Anlodipino/farmacologia , Rosuvastatina Cálcica/farmacologia , Sinvastatina/farmacologia , Vasodilatação , Vasodilatadores/farmacologiaRESUMO
[This corrects the article DOI: 10.1039/D2RA06522C.].
RESUMO
Cyanide (CN-) assimilation in plants takes place by ß-cyanoalanine synthase (ß-CAS) and sulfurtransferase (ST), in which the ST pathway converts CN- into thiocyanate (SCN-). Both chemicals (CN- and SCN-) are frequently detected in the effluent of gold mining operations. In this connection, exogenous SCN- was applied to rice plants with CN- and compared with CN- alone to investigate its effects on CN- assimilation and degradation pathways. Interestingly, the CN- and SCN- content in both roots and shoots were increased with the increase in "CN-" treatments, but surprisingly their content under "SCN-+CN-" treatments did not show the similar trend. The increasing trend remained the same for CN- but the SCN- content was constant with increasing CN- concentrations in comparison with the control (SCN- alone). Additionally, the assimilation rates of CN- in rice plants under "SCN-+CN-" treatments were significantly higher than "CN-" treatments. The application of SCN- with CN- mostly alters the expression of both ß-CAS and ST-associated genes. On one side, the application of SCN- significantly repressed the expression of genes encoded with ST in rice plants, but on the other side, it significantly up-regulated the expression of the ß-CAS gene located in mitochondria. These results reveal that the application of exogenous SCN- increases CN- assimilation rates by inhibiting the ST pathway and stimulating the ß-CAS pathway. This study would provide new insight into the positive effects of exogenous SCN- in increasing CN- assimilation by altering the degradation pathways in rice plants.
Assuntos
Cianetos , Oryza , Cianetos/toxicidade , Oryza/metabolismo , Tiocianatos/farmacologia , Sulfurtransferases/genética , Sulfurtransferases/farmacologiaRESUMO
[This corrects the article DOI: 10.3389/fchem.2023.1034473.].
RESUMO
Environmental factors affect plants in several ways including the excessive accumulation of methylglyoxal (MG), resulting in dysfunctions of many biological processes. Exogenous proline (Pro) application is one of the successful strategies to increase plant tolerance against various environmental stresses, including chromium (Cr). This study highlights the alleviation role of exogenous Pro on MG detoxification in rice plants induced by Cr(Vl) through modifying the expression of glyoxalase I (Gly I)- and glyoxalase II (Gly II)-related genes. The MG content in rice roots was significantly reduced by Pro application under Cr(VI) stress, however, there was little effect on the MG content in shoots. In this connection, the vector analysis was used to compare the involvement of Gly l and Gly II on MG detoxification in 'Cr(VI)' and 'Pro+Cr(VI)' treatments. Results exhibited that vector strength in rice roots increased with an increase in Cr concentrations, while there was a negligible difference in the shoots. The comparative analysis demonstrated that the vector strengths in roots under 'Pro+Cr(VI)' treatments were higher than 'Cr(VI)' treatments, suggesting that Pro improved Gly II activity more efficiently to reduce MG content in roots. Calculation of the gene expression variation factors (GEFs) indicated a positive effect of Pro application on the expression of Gly I and Gly ll-related genes, wherein a stronger impact was in roots than the shoots. Together, the vector analysis and gene expression data reveal that exogenous Pro chiefly improved Gly ll activity in rice roots which subsequently enhanced MG detoxification under Cr(VI) stress.
Assuntos
Lactoilglutationa Liase , Oryza , Cromo/toxicidade , Oryza/metabolismo , Aldeído Pirúvico/metabolismo , Prolina/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Expressão Gênica , Raízes de Plantas/metabolismoRESUMO
Background and Objectives: We have recently reported that stains have calcium channel blocking activity in isolated jejunal preparations. In this study, we examined the effects of atorvastatin and fluvastatin on blood vessels for a possible vasorelaxant effect. We also studied the possible additional vasorelaxant effect of atorvastatin and fluvastatin, in the presence of amlodipine, to quantify its effects on the systolic blood pressure of experimental animals. Materials and Methods: Atorvastatin and fluvastatin were tested in isolated rabbits' aortic strip preparations using 80mM Potassium Chloride (KCl) induced contractions and 1 micro molar Norepinephrine (NE) induced contractions. A positive relaxing effect on 80 mM KCl induced contractions were further confirmed in the absence and presence of atorvastatin and fluvastatin by constructing calcium concentration response curves (CCRCs) while using verapamil as a standard calcium channel blocker. In another series of experiments, hypertension was induced in Wistar rats and different test concentrations of atorvastatin and fluvastatin were administered in their respective EC50 values to the test animals. A fall in their systolic blood pressure was noted using amlodipine as a standard vasorelaxant drug. Results: The results show that fluvastatin is more potent than amlodipine as it relaxed NE induced contractions where the amplitude reached 10% of its control in denuded aortae. Atorvastatin relaxed KCL induced contractions with an amplitude reaching 34.4% of control response as compared to the amlodipine response, i.e., 39.1%. A right shift in the EC50 (Log Ca++ M) of Calcium Concentration Response Curves (CCRCs) implies that statins have calcium channel blocking activity. A right shift in the EC50 of fluvastatin with relatively less EC50 value (-2.8 Log Ca++ M) in the presence of test concentration (1.2 × 10-7 M) of fluvastatin implies that fluvastatin is more potent than atorvastatin. The shift in EC50 resembles the shift of Verapamil, a standard calcium channel blocker (-1.41 Log Ca++ M). Conclusions: Atorvastatin and fluvastatin relax the aortic strip preparations predominantly through the inhibition of voltage gated calcium channels in high molar KCL induced contractions. These statins also inhibit the effects of NE induced contractions. The study also confirms that atorvastatin and fluvastatin potentiate blood pressure lowering effects in hypertensive rats.
Assuntos
Bloqueadores dos Canais de Cálcio , Inibidores de Hidroximetilglutaril-CoA Redutases , Ratos , Coelhos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Fluvastatina/farmacologia , Fluvastatina/uso terapêutico , Vasodilatadores/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Cálcio , Pressão Sanguínea , Ratos Wistar , Verapamil/farmacologia , Canais de Cálcio/farmacologia , Cloreto de Potássio/farmacologiaRESUMO
OBJECTIVE: Patients reporting to emergency departments frequently use different ambulance services; therefore, the measurement of patient satisfaction is relevant to encouraging those services to meet patient expectations. The aim of this study was to determine the patients' satisfaction and utilization of different ambulance services at a tertiary health care hospital in Peshawar relating to prehospital services. METHODS: This cross-sectional study was conducted at Lady Reading Hospital, Peshawar, Khyber Pakhtunkhwa, Pakistan, from July 2019 to January 2020 using a consecutive sampling technique with a total sample size of 378. The patients reporting to the emergency department using any ambulance service were included in this study. Different types of ambulance services were used as an outcome variable. Proportions were compared for the categoric variables using the chi-square test, whereas the 1-way analysis of variance test was used to determine the mean response time and age. Results were considered significant at a P value ≤ .050. All analyses were completed using SPSS version 20 (IBM Corp, Armonk, NY). RESULTS: Of the total 378 study participants, approximately 166 (43.9%) used Rescue 1122 services, 99 (26.2%) used private ambulance services, and 44 (11.6%) used public ambulance services. Road traffic accidents were the most common complaint by 98 (25.9%, P < .003) participants. The mean response time for Rescue 1122 was 13.2 ± 18 minutes followed by the Chippa Foundation (private) at 17.8 ± 20 minutes (P < .005). Males (n = 254) were the predominant users of all services. Participants from the urban region (n = 112) used Rescue 1122, whereas the public ambulance service was used only by 31 patients (P < .005). Among all the ambulance services, 19 (61.3%) participants were not satisfied with the Chippa service regarding vehicle cleanliness, whereas participants were highly satisfied with Rescue 1122. CONCLUSION: Overall, the patients were more satisfied with the services provided by the Rescue 1122 ambulances compared with all other ambulance services.
Assuntos
Ambulâncias , Serviços Médicos de Emergência , Masculino , Humanos , Satisfação do Paciente , Estudos Transversais , Centros de Atenção Terciária , PaquistãoRESUMO
Bacillus species have been reported to reduce the negative effects of salt stress on plants; the involvement of Bacillus anthracis PM21 and the internal mechanisms involved in this process are unclear. The effects of PM21 inoculation on maize plants under salt stress were investigated in this study. The study aimed to assess the ability of Bacillus anthracis PM21 to endure high levels of salinity stress while preserving the concentration of plant growth regulators. The biomass, photosynthetic pigments, relative water content (RWC), antioxidants, osmoprotectants, inorganic ion contents, regulation of plant hormones and expression of antioxidants enzyme encoded genes were investigated under normal and salinity stress conditions. Bacillus anthracis PM21 produced a significant amount of 1-aminocyclopropane-1-carboxylate deaminase enzyme (ACC deaminase) and exopolysaccharides (EPS) under salt stress and normal conditions. PM21 also produced plant growth stimulants including indole acetic acid, gibberellic acid (GA3), kinetin, and siderophore under salinity stress and normal conditions. Under salt stress, PM21 inoculation markedly increased plant growth indices, stimulate antioxidant enzyme mechanisms, osmoprotectants, and chlorophyll content. The use of qRT-PCR to analyze the transcription of targeted genes indicated greater expression of antioxidant-encoded genes and inferred their possible function in salinity stress tolerance. Our findings shed light on the functions of PM21 and its regulatory mechanisms in plant salt stress tolerance, as well as the importance of PM21 in this process. This study will provide a thorough analysis of the theoretical framework for adopting PM21 in agricultural production as an eco-friendly method to enhance crop growth and yield under salinity stress.