Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Cell Dev Biol ; 11: 1164301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384249

RESUMO

Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.

2.
Curr Issues Mol Biol ; 45(5): 3933-3952, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37232720

RESUMO

The regulation of apoptosis (the programmed cell death) is dependent on the crucial involvement of BCL2 and BAX. The Bax-248G>A and Bcl-2-938 C>A polymorphic variations in the promoter sequences of the Bax and Bcl-2 gene have been recently associated with low Bax expression, progression to advanced stages, treatment resistance, and shortened overall survival rate in some hematological malignancies, including chronic myeloid leukemia (CML) and other myeloproliferative neoplasms. Chronic inflammation has been linked to various stages of carcinogenesis wherein pro-inflammatory cytokines play diverse roles in influencing cancer microenvironment leading to cell invasion and cancer progression. Cytokines such as TNF-α and IL-8 have been implicated in cancer growth in both solid and hematological malignancies with studies showing their elevated levels in patients. Genomic approaches have in recent years provided significant knowledge with the regard to the association of certain SNPs (single nucleotide polymerphisms) either in a gene or its promoter that can influence its expression, with the risk and susceptibility to human diseases including cancer. This study has investigated the consequences of promoter SNPs in apoptosis genes Bax-248G>A (rs4645878)/Bcl-2-938C>A (rs2279115) and pro-inflammatory cytokines TNF-α rs1800629 G>A/IL-8 rs4073 T>A on the risk and susceptibility towards hematological cancers. The study design has 235 individuals both male and female enrolled as subjects that had 113 cases of MPDs (myeloproliferative disorders) and 122 healthy individuals as controls. The genotyping studies were conducted through ARMS PCR (amplification-refractory mutation system PCR). The Bcl-2-938 C>A polymorphism showed up in 22% of patients in the study, while it was observed in only 10% of normal controls. This difference in genotype and allele frequency between the two groups was significant (p = 0.025). Similarly, the Bax-248G>A polymorphism was detected in 6.48% of the patients and 4.54% of the normal controls, with a significant difference in genotype and allele frequency between the groups (p = 0.048). The results suggest that the Bcl-2-938 C>A variant is linked to an elevated risk of MPDs in the codominant, dominant, and recessive inheritance models. Moreover, the study indicated allele A as risk allele which can significantly increase the risk of MPDs unlike the C allele. In case of Bax gene covariants, these were associated with an increased risk of MPDs in the codominant inheritance model and dominant inheritance model. It was found that the allele A significantly enhanced the risk of MPDs unlike the G allele. The frequencies of IL-8 rs4073 T>A in patients was found to be TT (16.39%), AT (36.88%) and AA (46.72%), compared to controls who were more likely to have frequencies of TT (39.34%), AT (37.70%) and AA (22.95%) as such, respectively. There was a notable overrepresentation of the AA genotype and GG homozygotes among patients compared to controls in TNF-α polymorphic variants, with 6.55% of patients having the AA genotype and 84% of patients being GG homozygotes, compared to 1.63% and 69%, respectively in controls. The data from the current study provide partial but important evidence that polymorphisms in apoptotic genes Bcl-2-938C>A and Bax-248G>A and pro-inflammatory cytokines IL-8 rs4073 T>A and TNF-α G>A may help predict the clinical outcomes of patients and determine the significance of such polymorphic variations in the risk of myeloproliferative diseases and their role as prognostic markers in disease management using a case-control study approach.

4.
Life (Basel) ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556474

RESUMO

The root-knot nematode Meloidogyne incognita is one of the most damaging plant-parasitic nematodes and is responsible for significant crop losses worldwide. Rising human health and environmental concerns have led to the withdrawal of commonly used chemical nematicides. There has been a tremendous demand for eco-friendly bio-nematicides with beneficial properties to the nematode hosting plants, which encourages the need for alternative nematode management practices. The current study was undertaken to determine the nematicidal potential of cotton seed cake (CSC) against second-stage juvenile (J2) hatching, J2 mortality, and J2 penetration of M. incognita in tomato plants in vitro. J2s and egg masses of M. incognita were exposed to four concentrations (250, 500, 750, and 1000 mg/L) of CSC extracts. The higher J2 mortality and inhibition of J2 hatching were found at 1000 mg/L, while the least effective result was observed at 250 mg/L of the CSC extract. The CSC extract applied with the concentrations mentioned above also showed inhibition of J2 penetration in tomato roots; 1000 mg/L showed the highest inhibition of penetration, while 250 mg/L displayed the least inhibition. Using gas chromatography-mass spectroscopy, we identified 11 compounds, out of which 9,12-Octadecadienoic acid, Hexadecanoic acid, and Tetradecanoic acid were found as major compounds. Subsequently, in silico molecular docking was conducted to confirm the nematicidal behavior of CSC based on binding interactions of the above three major compounds with the targeted protein acetylcholine esterase (AChE) of M. incognita. The values of binding free energy are -5.3, -4.5, and -4.9 kcal/mol, observed for 9,12-Octadecadienoic acid, n-Hexadecanoic acid, and Tetradecanoic acid, respectively, suggesting that 9,12-Octadecadienoic acid binds with the receptor AChE more efficiently than the other two ligands. This study indicates that CSC has nematicidal potential that can be used to control M. incognita for sustainable agriculture.

5.
Pol J Microbiol ; 71(4): 577-587, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537060

RESUMO

This study aimed to determine the genetic alterations in the Omicron variants compared to other variants of concern (VOCs) to trace the evolutionary genetics of the SARS-CoV-2 variants responsible for the multiple COVID-19 waves globally. The present study is an in silico analysis determining the evolution of selected 11 VOCs compared to the original Wuhan strain. The variants included six Omicrons and one variant of Alpha, Beta, Delta, Gamma, and Mu. The pairwise alignment with the local alignment search tool of NCBI Nucleotide-BLAST and NCBI Protein-BLAST were used to determine the nucleotide base changes and corresponding amino acid changes in proteins, respectively. The genomic analysis revealed 210 nucleotide changes; most of these changes (127/210, 60.5%) were non-synonymous mutations that occurred mainly in the S gene (52/127, 40.1%). The remaining 10.5% (22/210) and 1.9% (4/210) of the mutations were frameshift deletions and frameshift insertions, respectively. The frameshift insertion (Ins22194T T22195G) led to frameshift deletion (Δ211N). Only four mutations (C241T, C3037T, C14408T, and A23403G) were shared among all the VOCs. The nucleotide changes among Omicron variants resulted in 61 amino acid changes, while the nucleotide changes in other VOCs showed 11 amino acid changes. The present study showed that most mutations (38/61, 62.3%) among Omicron variants occurred in the S gene; and 34.2% of them (13/38) occurred in the receptor-binding domain. The present study confirmed that most of mutations developed by Omicron variants occurred in the vaccine target gene (S gene).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Genômica , Aminoácidos , Nucleotídeos , Organização Mundial da Saúde
6.
Life (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431040

RESUMO

Coronary artery disease (CAD) is an important cause of death worldwide. CAD is caused by genetic and other factors including hypertension, hyperlipidemia, obesity, stress, unhealthy diet, physical inactively, smoking and Type 2 diabetes (T2D). The genome wide association studies (GWASs) have revealed the association of many loci with risk to diseases such as cancers, T2D and CAD. Nitric oxide (NO) is a potent vasodilator and is required for normal vascular health. It is produced in the endothelial cells in a reaction catalyzed by the endothelial NO synthase (eNOS). Methylenetetrahydrofolate reductase (MTHFR) is a very important enzyme involved in metabolism of folate and homocysteine, and its reduced function leads to cardiovascular disease. The Krüppel-like factor-14 (KLF-14) is an important transcriptional regulator that has been implicated in metabolic syndrome. MicroRNA (MiRNAs) are short non-coding RNAs that regulate the gene expression of proteins involved in important physiological processes including cell cycle and metabolism. In the present study, we have investigated the potential impact of germline pathogenic variants of endothelial eNOS, KLF-14, MTHFR, MiRNA-27a and their association with risk to CAD in the Saudi population. Methods: Amplification Refractory Mutation System (ARMS) PCR was used to detect MTHFR, KLF-14, miRNA-27a and eNOS3 genotyping in CAD patients and healthy controls. About 125 CAD cases and 125 controls were enrolled in this study and statistical associations were calculated including p-value, risk ratio (RR), and odds ratio (OD). Results: There were statistically significant differences (p < 0.05) in genotype distributions of MTHFR 677 C>T, KLF-14 rs972283 G>A, miRNAs27a rs895819 A>G and eNOS3 rs1799983 G>T between CAD patients and controls. In addition, our results indicated that the MTHFR-TT genotype was associated with increased CAD susceptibility with an OR 2.75 (95%) and p < 0.049, and the KLF14-AA genotype was also associated with increased CAD susceptibility with an OR of 2.24 (95%) and p < 0.024. Moreover, the miRNAs27a-GG genotype protects from CAD risk with an OR = 0.31 (0.016), p = 0.016. Our results also indicated that eNOS3 -GT genotype is associated with CAD susceptibility with an OR = 2.65, and p < 0.0003. Conclusion: The MTHFR 677C>T, KLF14 rs972283 G>A, miRNAs27a A>G, and eNOS3 rs1799983 G>T genotypes were associated with CAD susceptibility (p < 0.05). These findings require verification in future large-scale population based studies before these loci are used for the prediction and identification of individuals at risk to CAD. Weight control, physical activity, and smoking cessation are very influential recommendations given by clinicians to the at risk individuals to reduce or delay the development of CAD.

7.
Metabolites ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355142

RESUMO

Globally, people are highly affected by Cadmium (Cd), the most hazardous heavy metal. It has been implicated in various pathogeneses. Oxidative stress may be one the main reasons for Cd-induced disorders in the body. This article investigates the protective ability of Catharanthus roseus (CR) extract on oxidative stress in the kidney and liver of rats exposed to Cd. After 21 days, a significant increase in MDA concentration (6.81 ± 0.05), (6.64 ± 0.03) was observed in Cd-treated groups compared to the control (5.54 ± 0.02), (5.39 ± 0.04) for the kidney and liver, respectively, while significant changes were observed in the haematological parameters. Antioxidant enzymes, GPx, CAT, and SOD showed a significant decrease in their activity. We established that increasing the concentration of Cd in the presence of H2O2 was able to cause stand scission in pBR322 plasmid DNA, which may be due to the mediation of ROS generated in the process. The antioxidant ability of CR extract was tested in DPPH and H2O2 scavenging assay, depicted by the increase in the percentage inhibition. Upon treatment of CR extract to rats, MDA concentration was decreased for the kidney and liver compared to the Cd-treated groups. This was again confirmed by comet assay of both tissues, where the degree of cellular DNA breakage caused by Cd toxicity decreased significantly upon treatment with CR extract. Overall, the results suggest that Cd plays a major role as an effector metal ion, causing a decrease in the concentration and activity of AO enzymes and enhanced lipid peroxidation. ROS production resulted in oxidative DNA damage within the cell, whereas CR extract showed potential antioxidant activity against ROS-mediated DNA damage induced by Cd poisoning.

8.
J Pers Med ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35455702

RESUMO

Polycystic ovary syndrome (PCOS) is a disorder with a symptomatic manifestation of an array of metabolic and endocrine impairments. PCOS has a relatively high prevalence rate among young women of reproductive age and is a risk factor for some severe metabolic diseases such as T2DM, insulin insensitivity, and obesity, while the most dominant endocrine malfunction is an excess of testosterone showing hyperandrogenism and hirsutism. MicroRNAs have been implicated as mediators of metabolic diseases including obesity and insulin resistance, as these can regulate multiple cellular pathways such as insulin signaling and adipogenesis. Genome-wide association studies during the last few years have also linked the Krüpple-like family of transcription factors such as KLF14, which contribute in mechanisms of mammalian gene regulation, with certain altered metabolic traits and risk of atherosclerosis and type-2 DM. This study has characterized the biochemical and endocrine parameters in PCOS patients with a comprehensive serum profiling in comparison to healthy controls and further examined the influence of allelic variations for miRNAs 27a (rs895819 A > G), 196a2 (rs11614913 C > T), 423 (rs6505162C > A), and transcription factor KLF14 (rs972283 A > G) gene polymorphism on the risk and susceptibility to PCOS. The experimental protocol included amplification refractory mutation-specific (ARMS)-PCR to detect and determine the presence of these polymorphic variants in the study subjects. The results in this case−control study showed that most of the serum biomarkers, both biochemical and endocrine, that were analyzed in the study demonstrated statistically significant alterations in PCOS patients, including lipids (LDL, HDL, cholesterol), T2DM markers (fasting glucose, free insulin, HOMA-IR), and hormones (FSH, LH, testosterone, and progesterone). The distribution of Krüppel-like factor 14 rs972283 G > A, miR-27a rs895819 A > G, and miR-196a-2 rs11614913 C > T genotypes analyzed within PCOS patients and healthy controls in the considered population was significant (p < 0.05), except for miR-423 rs6505162 C > A genotypes (p > 0.05). The study found that in the codominant model, KLF14-AA was strongly associated with greater PCOS susceptibility (OR 2.35, 95% CI = 1.128 to 4.893, p < 0.022), miR-27a-GA was linked to an enhanced PCOS susceptibility (OR 2.06, 95% CI = 1.165 to 3.650, p < 0.012), and miR-196a-CT was associated with higher PCOS susceptibility (OR 2.06, 95% CI = 1.191 to 3.58, p < 0.009). Moreover, allele A of KLF-14 and allele T of miR-196a2 were strongly associated with PCOS susceptibility in the considered population.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35270805

RESUMO

Polycystic ovary syndrome (PCOS) is regarded as one of the most frequently encountered endocrine disorders and affects millions of young women worldwide, resulting in an array of complex metabolic alterations and reproductive failure. PCOS is a risk factor for diabetes mellitus, obstructive sleep apnea, obesity and depression in patients. Estrogen receptors (ESRs) are significant candidates in endocrine function and ovarian response in women. Moreover, microRNAs and long non-coding RNAs are emerging as principal mediators of gene expression and epigenetic pathways in various disease states. This study has characterized the clinical parameters in PCOS patients with comprehensive biochemical profiling compared to healthy controls and further examined the influence of allelic variations for estrogen receptor-α (ESR1 PvuII-rs2234693 T>C) and miRNA-146a (rs2910164 C>G) gene polymorphism on the risk of and susceptibility to PCOS. In this case-control study, we have used amplification refractory mutation specific (ARMS)-PCR to detect and determine the presence of these polymorphic variants in the study subjects. Our results demonstrated that most of the biochemical markers, which were analyzed in the study, show statistically significant alterations in PCOS patients, including fasting glucose, free insulin, HOMA-IR, LDL, HDL, cholesterol and hormones such as FSH, LH, testosterone and progesterone, which correlate with the established biochemical alterations in the disorder. Further, it is reported that for estrogen receptor-α (ESR1 PvuII-rs2234693 T>C), the frequency of the T allele (fT) was significantly higher among patients (0.64 vs. 0.44) compared to controls, while the frequency of the C allele (fC) was lower in patients (0.36 vs. 0.56) compared to controls. However, it was found that there was no association of an increased risk of PCOS with the ESR1 PvuII-rs2234693 C>T gene polymorphism. On the contrary, the study found strong association of miRNA-146a (rs2910164 C>G) gene polymorphism with an enhanced risk of PCOS. The frequency of the C allele (fC) was significantly higher among patients (0.52 vs. 0.36) compared to controls. The frequency of the G allele (fG) was found to be lower in patients (0.48 vs. 0.64) compared to controls. The codominant, dominant and recessive models display a statistically significant association of polymorphic variations with PCOS. Moreover, the G allele was associated strongly with PCOS susceptibility with an OR = 1.92 (95%) CI = (1.300−2.859), RR = 1.38 (1.130−1.691) p-value < 0.001.


Assuntos
Receptor alfa de Estrogênio/genética , MicroRNAs , Síndrome do Ovário Policístico , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Estrogênio
10.
Saudi J Biol Sci ; 29(5): 3494-3501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35233173

RESUMO

In-silico studies on SARS-CoV-2 genome are considered important to identify the significant pattern of variations and its possible effects on the structural and functional characteristics of the virus. The current study determined such genetic variations and their possible impact among SARS-CoV-2 variants isolated in India. A total of 546 SARS-CoV-2 genomic sequences (India) were retrieved from the gene bank (NCBI) and subjected to alignment against the Wuhan variant (NC_045512.2), the corresponding amino acid changes were analyzed using NCBI Protein-BLAST. These 546 variants revealed 841 mutations; most of these were non-synonymous 464/841 (55.1%), there was no identical variant compared to the original strain. All genes; coding and non-coding showed nucleotide changes, most of the structural genes showed frequent nonsynonymous mutations. The most affected genes were ORF1a/b followed by the S gene which showed 515/841 (61.2%) and 120/841 (14.3%) mutations, respectively. The most frequent non-synonymous mutation 486/546 (89.01%) occurred in the S gene (structural gene) at position 23,403 where A changed to G leading to the replacement of aspartic acid by glycine in position (D614G). Interestingly, four variants also showed deletion. The variants MT800923 and MT800925 showed 12 consecutive nucleotide deletion in position 21982-21993 resulting in 4 consecutive amino acid deletions that were leucine, glycine, valine, and tyrosine in positions 141, 142, 143, and 144 respectively. The present study exhibited a higher mutations rate per variant compared to other studies carried out in India.

11.
J Integr Neurosci ; 21(1): 42, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164478

RESUMO

Citrus limon L. is an ingenious alternative medication and has a broad scope in managing several health conditions as part of natural remedies. Recently, medicinal plants have witnessed incredible consideration worldwide in the field of neuroscience for remedial intervention. The present work has investigated the phytochemical compounds and neuropharmacological potential of the seed extract of Citrus limon as a step to partially validate its formulations as nutraceuticals using an in vivo model. Diverse phytochemical groups such as alkaloids, glycosides, flavonoids, tannins, gums, saponins, steroids were qualitatively identified through colorimetric methods utilizing standard compounds. The neuropharmacological properties were studied in Swiss albino mice with the sleep time induced by thiopental sodium taken as an end-point, in standard hole cross, hole board, and open-field experiments at varying doses of 50 and 100 mg/kg body weight. Phytochemical screening showed that alkaloids, flavonoids, saponins, tannins, steroids, and glycosides are present in the aqueous extract of the seed. The extracts demonstrated a significant reduction in sleep onset and enhanced the sleep duration in a dose-dependent manner in thiopental sodium-induced sleeping time, along with a marked decrease in unconstrained locomotors and explorative properties in both hole cross and open field tests. Moreover, in the hole board study, the extracts minimized the count of head dips observed in the treated mice. The results shown in this study demonstrate that Citrus limon extracts have neuropharmacological properties that can be further examined for their potential role as an adjuvant with conventional medications or nutraceuticals.


Assuntos
Citrus , Neurotransmissores/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Sementes , Sono/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipnóticos e Sedativos/farmacologia , Locomoção/efeitos dos fármacos , Modelos Animais , Tiopental/farmacologia , Fatores de Tempo
12.
Biol Futur ; 73(1): 55-69, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35040098

RESUMO

Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.


Assuntos
Suplementos Nutricionais , Neoplasias , Carcinogênese , Proliferação de Células , Quimioprevenção , Dieta , Humanos , Neoplasias/prevenção & controle
13.
Mamm Genome ; 33(3): 508-516, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34997844

RESUMO

Polycystic ovary syndrome, previously known as Stein-Leventhal syndrome, is associated with altered reproductive endocrinology, predisposing a young woman towards the risk of PCOS. It has a prevalence of 6-20% among the reproductive-age women. Progesterone is a key hormone in the pathophysiology of PCOS and patients show diminished response (progesterone resistance), implicating the role of progesterone receptor (PR) as a factor in the disease etiology and prognosis. In this case-control study, we have used mutation-specific PCR (confirmed by Sanger sequencing) to detect the presence of a pathologically significant PR polymorphic variant called as PROGINS. The variant has an Alu insertion in intron G and has two SNPs in exon 4 and exon 5, with all the three aberrations in complete disequilibrium. Our results demonstrated a statistically significant difference in the frequencies of PROGINS between the PCOS patients and healthy controls (p = 0.047). The frequencies of the genotypes CC (A1/A1), CT (A1/A2), and TT (A2/A2) in patients were 74.50%, 20.58%, and 4.90%, and in healthy controls they were 87.28%, 11%, and 1.69%, respectively. Our results put forward two determining factors with regard to PCOS: (i) the frequency of PROGINS allele was significantly higher among PCOS patients compared to the healthy matched controls (0.15 vs 0.07) in the studied population, (ii) the PROGIN allele was significantly associated with the lower levels of serum progesterone in PCOS patients (p < 0.003). The findings are conspicuous as these relate the PROGINS variant to the increased susceptibility of PCOS and might explain the progesterone resistance in patients.


Assuntos
Síndrome do Ovário Policístico , Alelos , Estudos de Casos e Controles , Endométrio/anormalidades , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Síndrome do Ovário Policístico/genética , Polimorfismo de Nucleotídeo Único , Progesterona , Receptores de Progesterona/genética , Doenças Uterinas
14.
J Robot Surg ; 16(2): 279-285, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33813713

RESUMO

Obesity is an independent risk factor for postoperative morbidity and mortality in laparoscopic colorectal surgery (LCRS). The technological advantages of robotic colorectal surgery (RCRS) may allow surgeons to overcome the limitations of LCRS in obese patients, but it is largely unknown if this translates to superior outcomes. The aim of this study was to compare perioperative, postoperative and short-term oncological outcomes in obese (BMI ≥ 30.0 kg/m2) and non-obese (BMI < 30 kg/m2) patients undergoing RCRS in a university teaching hospital. Demographic, perioperative and postoperative data along with short-term oncological outcomes of obese and non-obese patients that underwent RCRS for both benign and malignant colorectal disease were identified from a prospectively maintained database. A total of 107 patients (34 obese, 73 non-obese) underwent RCRS over a 4-year period. No statistically significant differences in the incidence of complications, 30-day reoperation, 30-day mortality, conversion to open surgery, anastomotic leak or length of inpatient stay were demonstrated. Obese patients had a significantly higher rate of surgical site infection (SSI) (p < 0.0001). Short-term oncological outcomes in both groups were favourable. There was no statistically significant difference in median duration of surgery between the two cohorts. The results demonstrate that obese patients undergoing RCRS in this institution experience similar outcomes to non-obese patients. These results suggest that RCRS is safe and feasible in obese patients and may be superior to LCRS in this cohort, where the literature suggests a higher complication rate compared to non-obese patients. The inherent advantages of robotic surgical platforms, such as improved visualisation, dexterity and ergonomics likely contribute to the improved outcomes in this challenging patient population.


Assuntos
Cirurgia Colorretal , Laparoscopia , Procedimentos Cirúrgicos Robóticos , Índice de Massa Corporal , Cirurgia Colorretal/métodos , Humanos , Laparoscopia/métodos , Tempo de Internação , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/métodos , Resultado do Tratamento
15.
Semin Cancer Biol ; 83: 319-334, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33152485

RESUMO

The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.


Assuntos
Epigênese Genética , Neoplasias , Metilação de DNA , Dieta , Epigenômica , Humanos , Neoplasias/genética , Neoplasias/prevenção & controle
16.
J Robot Surg ; 16(3): 641-647, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34338996

RESUMO

The current gold standard surgical treatment for right colonic malignancy is the laparoscopic right hemicolectomy (LRH). However, laparoscopic surgery has limitations which can be overcome by robotic surgery. The benefits of robotics for rectal cancer are widely accepted but its use for right hemicolectomy remains controversial. The aim of this study was to compare outcomes in patients undergoing robotic right hemicolectomy (RRH) and LRH in a university teaching hospital. Demographic, perioperative and postoperative data along with early oncological outcomes of patients who underwent RRH and LRH with extracorporeal anastomosis (ECA) were identified from a prospectively maintained database. A total of 70 patients (35 RRH, 35 LRH) were identified over a 4-year period. No statistically significant differences in estimated blood loss, conversion to open surgery, postoperative complications, anastomotic leak, 30-day reoperation, 30-day mortality, surgical site infection or lengths of stay were demonstrated. Surgical specimen quality in both groups was favourable. The mean duration of surgery was longer in RRH (p < < 0.00001). A statistically significant proportion of RRH patients had a higher BMI and ASA grade. The results demonstrate that RRH is safe and feasible when compared to LRH, with no statistical difference in postoperative morbidity, mortality and early oncological outcomes. A difference was noted in operating time, however was influenced by training residents in docking the robot and a technically challenging cohort of patients. Operative time has shortened with further experience. Incorporating an intracorporeal anastomosis technique in RRH offers the potential to improve outcomes compared to LRH.


Assuntos
Neoplasias do Colo , Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Anastomose Cirúrgica , Colectomia/métodos , Neoplasias do Colo/cirurgia , Humanos , Laparoscopia/métodos , Tempo de Internação , Duração da Cirurgia , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/métodos
17.
Semin Cancer Biol ; 85: 155-163, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314819

RESUMO

Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética
18.
Ir J Med Sci ; 191(2): 853-857, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33977392

RESUMO

Transanal minimally invasive surgery (TAMIS) has gained worldwide acceptance as a means of local excision of early rectal cancers and benign rectal lesions. However, it is technically challenging due to the limitations of rigid laparoscopic instruments in the narrow rectal lumen. Robotic platforms offer improved ergonomics that are valuable in operative fields with limited space. Robotic TAMIS represents an exciting new development that may be more versatile than traditional TAMIS. In this review, we describe the first case of robotic TAMIS performed in our country and a review of current literature on the technique.


Assuntos
Neoplasias Retais , Procedimentos Cirúrgicos Robóticos , Cirurgia Endoscópica Transanal , Humanos , Irlanda , Neoplasias Retais/patologia , Neoplasias Retais/cirurgia , Reto/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Cirurgia Endoscópica Transanal/métodos
19.
Cytol Genet ; 55(6): 606-612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924640

RESUMO

Determining the variations in SARS-CoV-2 variant is considered main factor for understanding the pathogenic mechanisms, aid in diagnosis, prevention and treatment. The present study aimed to determine the genetic variations of SARS-CoV-2. The sequences of SARS-CoV-2 were obtained from National Center for Biotechnology Information (NCBI) and studied according to the time of isolation and their origin. The genome sequence of SARS-CoV-2 accession number NC_045512 which represented the first isolated sequence of SARS-CoV-2 (Wuhan strain) was used as the reference sequence. The obtained genome sequences of SARS-CoV-2 were aligned against this Wuhan strain and variations among nucleotides and proteins were examined. The sequence of SARS-CoV-2 accession number MT577016 showed very low homology 98.75% compared to Wuhan strain NC_045512. The analysis identified 301 nucleotide changes, which correspond to 258 different mutations; most of them 80% (207/258) were missense point mutations followed by 17.1% (44/258) silent point mutations. The critical mutations occurred in viral structural genes; 16.7% (43/258) mutations reported in S gene and 1 missense mutation was observed in E gene. Our finding showed the lowest homology and relatively distant phylogenetic relation of this SARS-CoV-2 variant with Wuhan strain along with high frequency of mutations including those in spike S and envelope E genes.

20.
Saudi J Biol Sci ; 28(12): 6803-6807, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866979

RESUMO

SARS-CoV-2 has become one of the unprecedented global health challenge for human population. Genomic signature studies of SARS-CoV-2 reveals relation between geographical location of the isolates and genetic diversity. The present work is an in silico, cross sectional study aimed to determine the genetic heterogeneity of SARS-CoV-2 variants isolated in Saudi Arabia compared to the first isolated strain NC_045512 (reference sequence). Each sequence was aligned against the reference sequence using local alignment search tool (NCBI) Nucleotide-BLAST. A total of 58 SARS-CoV-2 genomes were isolated in KSA and retrieved from NCBI. Our study shows that KSA variants demonstrated homology ranging between 99.96 and 99.98 % compared to the reference strain. There are 89 nucleotide changes that have been identified among the KSA variants; the most common nucleotide change was C: T accounting for 50.6% (45/89). These nucleotides changes resulted in 53.9% (48/89) missense mutations and 42.7% (38/89) silent mutations; while the majority of mutations- 48.3% (43/89) occurred in ORF1ab gene. All structural genes displayed mutations; N gene harbored 16.9% (15/89) mutations, S gene displayed 15.7% (14/89) mutations, M gene exhibited 2.2% (2/89) mutations and E gene showed only 1 mutation which was silent. The most frequently changed nucleotide was C3037T (silent mutation) and A23403G (D614G), each of which occurred in 57 variants out of 58 followed by C14408T (P4715L) and C241T (5'UTR) which were found in 56 and 55 variants respectively. The Phylogenetic trees showed that SARS-CoV-2 variants isolated in Saudi Arabia clustered together closely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA