Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771159

RESUMO

Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.


Assuntos
Antioxidantes , Moringa oleifera , Antioxidantes/química , Luz , Flavonoides/análise , Suplementos Nutricionais/análise
2.
Sensors (Basel) ; 22(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408329

RESUMO

Blockchain has revolutionized many fields, such as distributed sensor networks, finance, and cryptocurrency. Consensus between distributed network nodes is at the core of such blockchain technologies. The three primary performance measures for any consensus algorithm are scalability, security, and decentralization. This paper evaluates the usefulness and practicality of quantum consensus algorithms for blockchain-enhanced sensor, and computing networks and evaluates them against the aforementioned performance measures. In particular, we investigate their noise robustness against quantum decoherence in quantum processors and over fiber-optic channels. We observe that the quantum noise generally increases the error rate in the list distribution. However, the effect is variable on different quantum consensus schemes. For example, the entanglement-free scheme is more affected than entanglement-based schemes for the local noise cases, while in the case of noisy optical fiber links, the effect is prominent on all quantum consensus schemes. We infer that the current quantum protocols with noisy intermediate-scale quantum devices and noisy quantum communication can only be employed for modular units in intraenterprise-level blockchain, such as Zilliqa, for sensor, and computing networks.

3.
AMB Express ; 11(1): 137, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661766

RESUMO

Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.

4.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361665

RESUMO

In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Butileno Glicóis/análise , Cotilédone/química , Linho/química , Furanos/análise , Hipocótilo/química , Lignanas/análise , Extratos Vegetais/análise , Biomassa , Cromatografia Líquida de Alta Pressão/métodos , Cotilédone/metabolismo , Meios de Cultura/química , Técnicas de Cultura/métodos , Linho/metabolismo , Hipocótilo/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Fenóis/análise , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Tiadiazóis/farmacologia
5.
PLoS One ; 15(6): e0233963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530961

RESUMO

Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (ß-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.


Assuntos
Antioxidantes/metabolismo , Eclipta/metabolismo , Eclipta/efeitos da radiação , Hipoglicemiantes/metabolismo , Compostos Fitoquímicos/metabolismo , Antioxidantes/química , Cumarínicos/metabolismo , Eclipta/crescimento & desenvolvimento , Flavonoides/metabolismo , Hipoglicemiantes/química , Luz , Fenóis/metabolismo , Compostos Fitoquímicos/química , Metabolismo Secundário/efeitos da radiação , Técnicas de Cultura de Tecidos
6.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397194

RESUMO

Solanum xanthocarpum is considered an important traditional medicinal herb because of its unique antioxidant, and anti-diabetic, anti-aging, and anti-inflammatory potential. Because of the over exploitation linked to its medicinal properties as well as destruction of its natural habitat, S. xanthocarpum is now becoming endangered and its supply is limited. Plant in vitro culture and elicitation are attractive alternative strategies to produce biomass and stimulate biosynthesis of medicinally important phytochemicals. Here, we investigated the potential influence of seven different monochromatic light treatments on biomass and secondary metabolites accumulation in callus culture of S. xanthocarpum as well as associated biological activities of the corresponding extracts. Among different light treatments, highest biomass accumulation was observed in white light-treated callus culture. Optimum accumulation of total flavonoid contents (TFC) and total phenolic contents (TPC) were observed in callus culture kept under continuous white and blue light respectively than control. Quantification of phytochemicals through HPLC revealed that optimum production of caffeic acid (0.57 ± 0.06 mg/g DW), methyl-caffeate (17.19 mg/g ± 1.79 DW), scopoletin (2.28 ± 0.13 mg/g DW), and esculetin (0.68 ± 0.07 mg/g DW) was observed under blue light callus cultures. Compared to the classic photoperiod condition, caffeic acid, methyl-caffeate, scopoletin, and esculetin were accumulated 1.7, 2.5, 1.1, and 1.09-folds higher, respectively. Moreover, high in vitro cell free antioxidant, anti-diabetic, anti-aging, and anti-inflammatory activities were closely associated with the production of these secondary metabolites. These results clearly showed the interest to apply multispectral light as elicitor of in vitro callus cultures S. xanthocarpum to promote the production of important phytochemicals, and allow us to propose this system as an alternative for the collection of this endangered species from the wild.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Flavonoides/biossíntese , Hipoglicemiantes/metabolismo , Luz , Células Vegetais/metabolismo , Solanum/metabolismo , Solanum/citologia
7.
J Photochem Photobiol B ; 196: 111505, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31129506

RESUMO

Lepidium sativum L. is an important edible, herbaceous plant with huge medicinal value as cardio-protective, hepatoprotective and antitumor agent. This study was designed and performed to investigate biosynthesis of plant's active ingredients in callus cultures of L. sativum in response to the exposure of multi spectral lights. Optimum biomass accumulation (15.36 g/L DW), total phenolic and flavonoid contents (TPC; 47.43 mg/g; TFC; 9.41 mg/g) were recorded in calli placed under white light (24 h) compared to rest of the treatments. Antioxidant enzymatic activities i.e. superoxide dismutase and peroxidase were found optimum in cultures exposed to green light (SOD; 0.054 nM/min/mg FW, POD; 0.501 nM/min/mg FW). Phytochemical analysis further confirmed the potential influence of white light exposure on enhanced production of plant's metabolites. Significant enhancement level of major metabolic compounds such as chlorogenic acid (7.20 mg/g DW), quercetin (22.08 mg/g DW), kaempferol (7.77 mg/g DW) and minor compounds including ferulic acid, sinapic acid, protocatechuic acid, vanillic acid and caffeic acid were recorded in white light compared to control (photoperiod), whereas blue light increased the p-coumaric acid accumulation. Moreover, callus cultures of this plant under white light (24 h) showed highest in vitro based anti-diabetic and antioxidant activities compared to other conditions. Finding of our current study revealed that multi spectral lights are proved to be an effective strategy for enhancing metabolic quantity of antioxidant and anti-diabetic bioactive compounds in callus cultures of L. sativum L.


Assuntos
Antioxidantes/química , Hipoglicemiantes/metabolismo , Lepidium sativum/metabolismo , Luz , Polifenóis/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Hipoglicemiantes/análise , Hipoglicemiantes/química , Lepidium sativum/crescimento & desenvolvimento , Peroxidase/metabolismo , Compostos Fitoquímicos/análise , Células Vegetais/metabolismo , Células Vegetais/efeitos da radiação , Proteínas de Plantas/metabolismo , Polifenóis/análise , Polifenóis/química , Superóxido Dismutase/metabolismo
8.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978911

RESUMO

Lepidium sativum L. is a rich source of polyphenols that have huge medicinal and pharmaceutical applications. In the current study, an effective abiotic elicitation strategy was designed for enhanced biosynthesis of polyphenols in callus culture of L. sativum. Callus was exposed to UV-C radiations for different time intervals and various concentrations of melatonin. Secondary metabolites were quantified by using high-performance liquid chromatography (HPLC). Results indicated the total secondary metabolite accumulation of nine quantified compounds was almost three fold higher (36.36 mg/g dry weight (DW)) in melatonin (20 µM) treated cultures, whereas, in response to UV-C (60 min), a 2.5 fold increase (32.33 mg/g DW) was recorded compared to control (13.94 mg/g DW). Metabolic profiling revealed the presence of three major phytochemicals, i.e., chlorogenic acid, kaemferol, and quercetin, in callus culture of L. sativum. Furthermore, antioxidant, antidiabetic, and enzymatic activities of callus cultures were significantly enhanced. Maximum antidiabetic activities (α-glucosidase: 57.84%; α-amylase: 62.66%) were recorded in melatonin (20 µM) treated callus cultures. Overall, melatonin proved to be an effect elicitor compared to UV-C and a positive correlation in these biological activities and phytochemical accumulation was observed. The present study provides a better comparison of both elicitors and their role in the initiation of physiological pathways for enhanced metabolites biosynthesis in vitro callus culture of L. sativum.


Assuntos
Antioxidantes/metabolismo , Vias Biossintéticas/efeitos da radiação , Hipoglicemiantes/metabolismo , Lepidium sativum/metabolismo , Lepidium sativum/efeitos da radiação , Melatonina/metabolismo , Flavonoides/metabolismo , Lepidium sativum/enzimologia , Metaboloma/efeitos da radiação , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo Secundário/efeitos da radiação , Raios Ultravioleta
9.
Molecules ; 24(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934786

RESUMO

Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in vitro potential under different light regimes in the presence of melatonin. The optimal callogenic response occurred in the combination of 1.0 mg/L α-naphthalene acetic acid and 0.5 mg/L 6-benzylaminopurine under photoperiod. Continuous light associated with melatonin treatment increased total flavonoid content (TFC), total phenolic content (TPC) and antioxidant potential, followed by photoperiod and dark treatments. The increased level of melatonin has a synergistic effect on biomass accumulation under continuous light and photoperiod, while an adverse effect was observed under dark conditions. More detailed phytochemical analysis showed maximum total silymarin content (11.92 mg/g dry weight (DW)) when placed under continuous light + 1.0 mg/L melatonin. Individually, the level of silybins (A and B), silydianin, isolsilychristin and silychristin was found highest under continuous light. Anti-inflammatory activities were also studied and highest percent inhibition was recorded against 15-lipoxygenase (15-LOX) for cultures cultivated under continuous light (42.33%). The current study helps us to better understand the influence of melatonin and different light regimes on silymarin production as well as antioxidant and anti-inflammatory activities in S. marianum callus extracts.


Assuntos
Anti-Inflamatórios/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Luz , Melatonina/farmacologia , Silybum marianum/química , Silybum marianum/metabolismo , Silimarina/biossíntese , Anti-Inflamatórios/química , Antioxidantes/química , Antioxidantes/farmacologia , Biomassa , Metabolismo Secundário/efeitos dos fármacos
10.
J Photochem Photobiol B ; 190: 163-171, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30482427

RESUMO

Fagonia indica is one of the commercially vital medicinal plant species. It is well-known for biosynthesis of anticancer phenolics and flavonoids metabolites. The plant has been exploited for in vitro studies and production of vital phytochemicals, however, the synergistic effects of melatonin and lights remains to be investigated. In current study, we have evaluated the synergistic effects of melatonin and different light emitting diodes (LEDs) in callus cultures of F. indica. Both, light and melatonin play vital role in physiological and biochemical processes of plant cell. The highest Fresh weight (FW: 320 g/L) and Dry weight (DW: 20 g/L) was recorded in cultures under white LEDs. Optimum total phenolics content (11.3 µg GAE/mg), total flavonoids content (4.02 µg QAE/mg) and Free radical scavenging activity (97%) was found in cultures grown under white LED and melatonin. Furthermore, cultures maintained under white light were also found with highest levels of phenolic and flavonoids production (total phenolic production; 226.9 µg GAE/mg, Total flavonoid production; 81 µg QAE/mg) than other LED-grown cultures. However, the antioxidant enzymes; Superoxide dismutase (SOD: 0.53 nM/min/mg FW) and Peroxidase (POD:1.18 nM/min/mg FW) were found optimum in cultures grown under blue LED. The HPLC data showed that enhanced total production of metabolites was recorded in cultures under white LED (6.765 µg/mg DW) than other lights and control. The findings of this study comprehend the role of melatonin and influence of light quality on biomass accumulation and production of phytochemicals in callus cultures of F. indica.


Assuntos
Antineoplásicos/metabolismo , Luz , Melatonina/farmacologia , Zygophyllaceae/citologia , Biomassa , Células Cultivadas , Flavonoides/análise , Sequestradores de Radicais Livres/análise , Fenóis/análise , Compostos Fitoquímicos
11.
J Pak Med Assoc ; 67(7): 1094-1096, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28770894

RESUMO

The purpose of this study was to measure the clinical outcomes for patients with stroke after gait training with body weight support (BWS) and with no body weight support (no-BWS).Experimental group was trained to walk by a BWS system with overhead harness (BWS group), and Control group was trained with full weight bearing walk on their lower extremities. Treatment session comprised of six weeks training. Treatment outcomes were assessed on the basis of Timed 10 Meter Walk Test, Timed Get Up and Go Test and Dynamic Gait Index. There was a significant (P<0.05) difference in BWS and NBWS for Dynamic Gait Index, Timed Get Up and Go Test, Timed 10 Meter Walk Test (Self-Selected Velocity), and Timed 10 Meter Walk Test (Fast-Velocity). Training of gait in stroke patients while a percentage of their body weight supported by a harness, resulted in better walking abilities than the Training of gait while full weight was placed on patient's lower extremities.


Assuntos
Transtornos Neurológicos da Marcha/reabilitação , Modalidades de Fisioterapia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Suporte de Carga , Adulto , Feminino , Análise da Marcha , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Resultado do Tratamento , Teste de Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA