Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(44): 41918-41929, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969994

RESUMO

In ancient times, Withania coagulans Dunal was used as a therapeutic plant for the treatment of several diseases. This report aims to examine the effect of Agrobacterium tumefactions-mediated transformation of W. coagulans with the rolA gene to enhance secondary metabolite production, antioxidant activity, and anticancer activity of transformed tissues. Before transgenic plant production, the authors designed an efficient methodology for in vitro transformation. In this study, leaf explants were cultured on Murashage and Skoog (MS) media containing different amounts of naphthalene acetic acid (NAA) and benzyl adenine (BA). The best performance for inducing embryogenic callus was in MS medium containing 4 µM NAA and 6.0 µM BA, while the best results for shooting (100%) were obtained at 8 µM benzyl adenine. On the other hand, direct shooting was attained by subculturing leaves on MS medium supplemented with 8 µM benzyl adenine. Prolonged shoots showed excellent in vitro rooting results (80%) with 12 µM indole-3-butyric acid (IBA). The samples were precultivated for 3 days and were followed by 48 h infection with A. tumefaciens strain GV3101 having pCV002. Then, a vector expressed the rol A gene of strain Agrobacterium rhizogenes. Furthermore, three independent transgenic shoot lines and one callus line (T2) were produced and exhibited stable integration of transgene rol A genes, as revealed by PCR analysis. Transgenic strains showed a significant increase in antioxidant potential as compared to untransformed plants. Additionally, LC-MS analysis showed that the transformed strains have a higher withanolide content as compared to untransformed ones. Moreover, the reduced proliferation of prostate cancer cells was observed after treatment with extracts of transgenic plants. Furthermore, these transformed plants exhibited superior antioxidant capability and higher withanolide content than untransformed ones. In conclusion, the reported data can be used to select withanolide-rich germplasm from transformed cell cultures.

2.
Crit Rev Anal Chem ; : 1-21, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671238

RESUMO

Rapid detection of toxic ions has taken great attention in the last few decades due to its importance in maintaining a greener environment for human beings. The extreme toxicity of cyanide (CN-) ions is a great environmental concern as its continued industrial use generates interest in facile and sensitive methods for CN- ions detection. Since CN- ions act as a ligand in coordination chemistry which rapidly coordinates with suitable metals and forms complexes, this ability was mainly explored in its detection. It also attacks the central metal in coordination compounds and gives a fluorimetric response. Coordination compounds behave as a sensor for the detection of important ions like CN- ions and have gained great attention due to their facile synthesis, multianalyte detection, clear detection and low detection limit. Recently, considerable efforts have been devoted to the detection and quantification of hazardous multianalyte using a single probe. Cu2+ complexes are the main complexes used for CN- ions detection; however, the complexes of many other metals are also used as sensors. Four basic types of interaction have been discussed in coordination compound sensors for CN- detection. The performances of different sensors are compared with one another and the sensors which have the lowest detection limit are highlighted. This review comprises the progress made by coordination compounds as sensors for the detection of CN- ions in the last six years (2015-2021). To the best of our knowledge, there is no review on coordination compounds as a sensor for CN- ions during this period.

3.
Crit Rev Anal Chem ; : 1-17, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290138

RESUMO

To maintain a green and sustainable environment for human beings, rapid detection of potentially toxic heavy metals like mercury (Hg(II)) has attracted great attention. Recently, sensors have been designed which can selectively detect Hg(II) over other common available cations and give a naked eye or fluorometric response. In the last two decades, the trend is shifting from bulky organic chemosensors toward nanoparticles due to their rapid response, low cost, eco-friendly and easy synthesis. In this review, promising nanoparticles-based sensors for Hg(II) detection are discussed. The nano-sensors are functionalized with nucleotide or other suitable materials which coordinate with Hg(II) ions and give clear color or fluorescence change. The operational mechanisms are discussed focusing on its four basic types. The nanoparticles-based sensors are even able to detect Hg in three different oxidation states (Hg(II), Hg(I) and Hg(0)). Recently, the trend has been shifted from ordinary nanoparticles to magnetic nanoparticles to simultaneously detect and remove Hg(II) ions from environmental samples. Furthermore, the nano-sensors for Hg(II) are compared with each other and with the reported organic chemosensors.

4.
3 Biotech ; 9(10): 350, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31501751

RESUMO

A novel polyvinyl alcohol (PVA)-degrading strain Bacillus cereus RA23 was isolated from an oil sludge sample and environmental factors affecting its PVA degradation efficiency were optimized in detail. Inorganic nitrogen source, ammonium chloride (NH4Cl), was found to be the best nitrogen source and enhanced the PVA degradation rate greatly. The optimal medium for PVA biodegradation consisted of (g/L) PVA 1, NH4Cl 1, K2HPO4 1.6, MgSO4·7H2O 0.05, FeSO4·6H2O 0.02, CaCl2 0.05, NaCl 0.02. The optimal temperature and pH for PVA biodegradation by strain RA23 was 28 °C and 7.0, respectively, and 85% of 0.1% PVA was degraded after 5 days under these conditions. FTIR studies showed that the carboxylic acids (possibly including aldehyde or ketone) could be the intermediate product of PVA biodegradation. The investigation of strain RA23 for PVA degradation will provide important information to facilitate the removal of wastewater pollution in industrial zones.

5.
Environ Technol ; 39(16): 2056-2061, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28669293

RESUMO

In this study, polyvinyl alcohol (PVA)-degrading bacteria were screened from oil sludge using PVA as a sole source of carbon in the culture medium. A novel strain, SA21, was obtained and identified as a member of the Stenotrophomonas genus based on the analysis of a partial 16S rDNA nucleotide sequence, morphological and biochemical characteristics, and phylogenetic analysis. This Stenotrophomonas isolate had not previously been reported as a PVA-degrading bacterium. Stenotrophomonas sp. strain SA21 degraded 90% of the PVA present in the culture medium after 4 days. The effect of nitrogen sources on the production of PVA-degrading enzyme involved in the biodegradation process was significant, and the enzymatic activity reached 82 U/ml when ammonium nitrate or urea was used in the optimized medium. The information obtained in this study will provide a foundation for improving industrial wastewater treatment. ABBREVIATIONS: DCW: dry cell weight; FTIR: Fourier Transform Infrared Spectroscopy; NCBI: National Center for Biotechnology Information; PCR: polymerase chain reaction; PVA: polyvinyl alcohol; SEM: scanning electron microscope.


Assuntos
Álcool de Polivinil/metabolismo , Stenotrophomonas , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , DNA Ribossômico , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA