Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 185, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600604

RESUMO

Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.


Assuntos
Hepatopatias , Esquistossomose , Animais , Humanos , Schistosoma/fisiologia , Esquistossomose/patologia
2.
Biomed J ; : 100726, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621646

RESUMO

BACKGROUND: Nuclear receptors (NRs) are vital for regulating gene expression un organisms. Hepatocyte nuclear factor 4 (HNF4), a class of NRs, participates in blood feeding and intestinal maintenance in schistosomes. However, there is limited research on the molecular and functional characterization of HNF4 in Schistosoma japonicum (S. japonicum). METHODS: Highly specific polyclonal antibodies were generated to analyze the expression and tissue localization of S. japonicum HNF4 (SjHNF4). The potential biological functions of SjHNF4 were characterized by transcriptome and pull-down analysis. Subsequently, enrichment analysis was performed to identify the specific signaling pathways linked to SjHNF4. RESULTS: The SjHNF4 protein was expressed heterologously and purified successfully. High purity and high potency polyclonal antibodies were further prepared. The expression of SjHNF4 was higher in female compared to male worms at both transcriptional and protein levels. Female worms expressed SjHNF4 in their perithecium, reproductive system, and certain parts of the intestinal tissues. SjHNF4 was also detected in the perithecium of male worms, as well as in the head, body of cercaria, and eggs. Furthermore, our findings highlighted the potential role of SjHNF4 in blood feeding and its interaction with crucial pathways such as glucose metabolism, lipid metabolism, and nucleotide metabolism. CONCLUSIONS: This study shed light on the location of SjHNF4 in different life stages of S. japonicum, particularly associated with the female schistosomes. A strong correlation was observed between SjHNF4 and essential metabolic pathways. These findings laid a solid groundwork for the research on the relationship between NRs and schistosomes.

3.
BMC Oral Health ; 24(1): 411, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575895

RESUMO

BACKGROUND: The oral cavity is home to various ecological niches, each with its own unique microbial composition. Understanding the microbial communities and gene composition in different ecological niches within the oral cavity of oral cancer (OC) patients is crucial for determining how these microbial populations contribute to disease progression. METHODS: In this study, saliva and dental plaque samples were collected from patients with OC. Metagenomic sequencing was employed to analyze the microbial community classification and functional composition of the different sample groups. RESULTS: The results of the study revealed significant differences in both the function and classification of microbial communities between saliva and dental plaque samples. The diversity of microbial species in saliva was found to be higher compared to  that in plaque samples. Notably, Actinobacteria were enriched in the dental plaque of OC patients. Furthermore, the study identified several inter-group differential marker species, including Prevotella intermedia, Haemophilus parahaemolyticus, Actinomyces radius, Corynebacterium matruchitii, and Veillonella atypica. Additionally, 1,353 differential genes were annotated into 23 functional pathways. Interestingly, a significant correlation was observed between differentially labeled species and Herpes simplex virus 1 (HSV-1) infection, which may be related to the occurrence and development of cancer. CONCLUSIONS: Significant differences in the microbial and genetic composition of saliva and dental plaque samples were observed in OC patients. Furthermore, pathogenic bacteria associated with oral diseases were predominantly enriched in saliva. The identification of inter-group differential biomarkers and pathways provide insights into the relationship between oral microbiota and the occurrence and development of OC.


Assuntos
Placa Dentária , Neoplasias Bucais , Humanos , Saliva/microbiologia , Placa Dentária/microbiologia , Bactérias/genética , RNA Ribossômico 16S/genética
4.
J Med Virol ; 95(11): e29237, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994186

RESUMO

Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, can establish latent infection in B lymphocytes and certain epithelial cells after primary infection. Under certain circumstances, EBV can enter into lytic replication. However, the regulation of EBV latent-lytic infection remains largely unclear. The important immune molecule, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), was upregulated in EBV latently infected cells. When the lytic replication of EBV was induced, the expression of IFIT3 was further increased. In turn, IFIT3 overexpression dramatically inhibited the lytic replication of EBV, while IFIT3 knockdown facilitated EBV lytic replication. Moreover, upon the lytic induction, the ectopic IFIT3 expression promoted the activation of the interferon (IFN) pathway, including the production of IFN-stimulated genes (ISGs), IFNB1, and the phosphorylation of IFN-regulatory factor 3 (IRF3). In contrast, the depletion of IFIT3 led to decreased ISGs and IFNB1 expression. Mechanically, IFIT3 inhibited EBV lytic replication through IFN signaling. This study revealed that the host innate immune-related factor IFIT3 played an important role in regulating EBV latent-lytic homeostasis. The results implied that EBV has evolved well to utilize host factors to maintain latent infection.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Latente , Humanos , Herpesvirus Humano 4 , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferons/metabolismo , Replicação Viral/fisiologia , Ativação Viral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA