Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 832, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39232682

RESUMO

BACKGROUND: Oxidative stress mediated by reactive oxygen species (ROS) is a common denominator in arsenic toxicity. Arsenic stress in soil affects the water absorption, decrease stomatal conductance, reduction in osmotic, and leaf water potential, which restrict water uptake and osmotic stress in plants. Arsenic-induced osmotic stress triggers the overproduction of ROS, which causes a number of germination, physiological, biochemical, and antioxidant alterations. Antioxidants with potential to reduce ROS levels ameliorate the arsenic-induced lesions. Plant growth promoting rhizobacteria (PGPR) increase the total soluble sugars and proline, which scavenging OH radicals thereby prevent the oxidative damages cause by ROS. The main objective of this study was to evaluate the potential role of Arsenic resistant PGPR in growth of maize by mitigating arsenic stress. METHODOLOGY: Arsenic tolerant PGPR strain MD3 (Pseudochrobactrum asaccharolyticum) was used to dismiss the 'As' induced oxidative stress in maize grown at concentrations of 50 and 100 mg/kg. Previously isolated arsenic tolerant bacterial strain MD3 "Pseudochrobactrum asaccharolyticum was used for this experiment. Further, growth promoting potential of MD3 was done by germination and physio-biochemical analysis of maize seeds. Experimental units were arranged in Completely Randomized Design (CRD). A total of 6 sets of treatments viz., control, arsenic treated (50 & 100 mg/kg), bacterial inoculated (MD3), and arsenic stress plus bacterial inoculated with three replicates were used for Petri plates and pot experiments. After treating with this MD3 strain, seeds of corn were grown in pots filled with or without 50 mg/kg and 100 mg/kg sodium arsenate. RESULTS: The plants under arsenic stress (100 mg/kg) decreased the osmotic potential (0.8 MPa) as compared to control indicated the osmotic stress, which caused the reduction in growth, physiological parameters, proline accumulation, alteration in antioxidant enzymes (Superoxide dismutase-SOD, catalase-CAT, peroxidase-POD), increased MDA content, and H2O2 in maize plants. As-tolerant Pseudochrobactrum asaccharolyticum improved the plant growth by reducing the oxidation stress and antioxidant enzymes by proline accumulation. PCA analysis revealed that all six treatments scattered differently across the PC1 and PC2, having 85.51% and 9.72% data variance, respectively. This indicating the efficiency of As-tolerant strains. The heatmap supported the As-tolerant strains were positively correlated with growth parameters and physiological activities of the maize plants. CONCLUSION: This study concluded that Pseudochrobactrum asaccharolyticum reduced the 'As' toxicity in maize plant through the augmentation of the antioxidant defense system. Thus, MD3 (Pseudochrobactrum asaccharolyticum) strain can be considered as bio-fertilizer.


Assuntos
Antioxidantes , Arsênio , Estresse Oxidativo , Água , Zea mays , Zea mays/microbiologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Arsênio/toxicidade , Antioxidantes/metabolismo , Água/metabolismo , Burkholderiales/metabolismo , Burkholderiales/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Front Microbiol ; 15: 1411264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113836

RESUMO

The diversity of Ganoderma remains largely unexplored, with little information available due to fungiphobia and the morphological plasticity of the genus. To address this gap, an ongoing study aims to collect and identify species with this genus using nuclear ribosomal DNA regions called the "Internal Transcribed Spacer" (ITS1-5.8S-ITS2 = ITS). In this study, a new species, Ganoderma segmentatum sp. nov., was discovered on the dead tree trunk of the medicinal plant, Vachellia nilotica. The species was identified through a combination of morpho-anatomical characteristics and phylogenetic analyses. This new species was closely related to Ganoderma multipileum, G. mizoramense, and G. steyaertanum, with a 99% bootstrap value, forming a distinct branch in the phylogenetic tree. Morphologically, G. segmentatum can be distinguished by its frill-like appearance on the margin of basidiome. Wilt or basal stem rot, a serious disease of trees caused by Ganoderma species and V. nilotica, is brutally affected by this disease, resulting in substantial losses in health and productivity. This Ganoderma species severely damages V. nilotica through deep mycelial penetration in the upper and basal stems of the host species. Pathogenic observational descriptions of G. segmentatum on dead tree trunks showed the exudation of viscous reddish-brown fluid from the basal stem portion, which gradually extended upward. Symptoms of this disease include decay, stem discoloration, leaf drooping, and eventual death, which severely damaged the medicinal tree of V. nilotica.

3.
BMC Microbiol ; 24(1): 304, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138453

RESUMO

BACKGROUND: Ectomycorrhizal (ECM and ECM-like) structures associated with plant root systems are a challenge for scientists. The dispersion pattern of roots within the soil profile and the nutritional conditions are both favourable factors to motivate the plants to make ECM associations. RESULTS: This study discusses the colonization of mycorrhizal associations in Kobresia and Polygonum species including Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens grown naturally in cold stressed soils of Gilgit-Baltistan (high-altitude alpine Deosai plains), Hazara, Swat, Dir, and Bajaur. Sieved soil batches were exposed to +5 °C (control), -10, -20, -30, -40, -50, -125 °C for 5 h, and selected plants were sown to these soils for 10 weeks under favourable conditions for ECM colonization. Ectomycorrhizal associations were examined in the above mentioned plants. Some ECM fungi have dark mycelia that look like the mantle and Hartig net. Examples of these are Kobresia filicina, K. myosuroides, and Polygonum viviparum. Findings of this study revealed that K. myosuroides excelled in ECM root tip length, dry mass, and NH4 concentration at -125 °C. Contrarily, A. nitida demonstrated the lower values, indicated its minimum tolerance. Notably, T. repens boasted the highest nitrogen concentration (18.7 ± 1.31 mg/g), while P. sylvestris led in phosphorus (3.2 ± 0.22 mg/g). The B. pendula showed the highest potassium concentration (9.4 ± 0.66 mg/g), emphasising species-specific nutrient uptake capabilities in extreme cold conditions. The PCA analysis revealed that the parameters, e.g., NH4 in soil mix (NH4), NO3 in soil mix (NO3), phosphorus in soil in species of Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens are most accurately represented in cases of + 5 °C, -10 °C, and -20 °C temperatures. On the other hand, the parameters for ECM root tips (ECM) and Dry Mass (DM) are best described in -40 °C, -50 °C, and - 125 °C temperatures. All parameters have a strong influence on the variability of the system indicated the efficiency of ECM. The heatmap supported the nutrients positively correlated with ECM colonization with the host plants. CONCLUSION: At lower temperatures, hyphae and spores in roots were reduced, while soluble phosphorus concentrations of leaves were increased in cold stress soils. Maximum foliar nutrient concentrations were found in K. myosuroides at the lowest temperature treatments due to efficient functioning and colonization of ECM.


Assuntos
Temperatura Baixa , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Solo/química , Nutrientes/metabolismo , Cyperaceae/microbiologia , Cyperaceae/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose , Polygonum/microbiologia , Polygonum/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/análise
4.
Microb Cell Fact ; 22(1): 258, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098010

RESUMO

Color chemicals contaminate pure water constantly discharged from different points and non-point sources. Physical and chemical techniques have certain limitations and complexities for bioenergy production, which motivated the search for a novel sustainable production approaches during dye wastewater treatment. The emerging environmental problem of dye decolorization has attracted scientist's attention to a new, cheap, and economical way to treat dye wastewater and power production via fungal fuel cells. Ganoderma gibbosum was fitted in the cathodic region with laccase secretion in the fuel cell. At the same time, dye water was placed in the anodic region to move electrons and produce power. This study treated wastewater using the oxidoreductase enzymes released extracellularly from Ganoderma gibbosum for dye Remazol Brilliant Blue R (RBBR) degradation via fungal-based fuel cell. The maximum power density of 14.18 mW/m2 and the maximum current density of 35 mA/m2 were shown by the concentration of 5 ppm during maximum laccase activity and decolorization of RBBR. The laccase catalysts have gained considerable attention because of eco-friendly and alternative easy handling approaches to chemical methods. Fungal Fuel Cells (FFCs) are efficiently used in dye treatment and electricity production. This article also highlighted the construction of fungal catalytic cells and the enzymatic performance of fungal species in energy production during dye water treatment.


Assuntos
Lacase , Águas Residuárias , Lacase/metabolismo , Corantes/metabolismo , Eletricidade
5.
BMC Microbiol ; 23(1): 280, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784032

RESUMO

BACKGROUND: Agitation speed influenced the production rate of laccase. Orbital speed not only influenced the enzyme production, but was also effective to dissolve the oxygen during growth of mycelium, spores, and chlamydospores. Shear effects of speed greatly influenced the morphology of mycelium. METHODS: Ganoderma multistipitatum was identified by ITS marker. Phylogenetic tree was constructed for species identification. Qualitatively by plate method contained guaiacol indicator, while quantitatively by submerged fermentation and Central Composite Design applied on agitation parameter for maximum laccase potential of this species. The effects of agitation speed on mycelium morphology were observed under compound and scanning electron microscope. RESULTS: Statistical optimization of agitation conditions were performed by using response surface methodology to enhance the production of laccase from Ganoderma multistipitatum sp. nov. Maximum laccase yield (19.44 × 105 ± 0.28 U/L) was obtained at 150 rpm grown culture, which was higher than predicted value of laccase production (19.18 × 105 U/L) under aerobic conditions (150 rpm). The 150 rpm provided the continuous flush of oxygen. The DO (dissolved oxygen) was maximum (65%) for "27 h" incubation at 150 rpm during laccase synthesis. The statistical value of laccase production was minimum under anaerobic or nearly static condition of 50 rpm. The predicted (12.78 × 105 U/L) and obtained (12.82 × 105 U/L) yield was low at 50 rpm. Optimization of orbital shaking for aeration conditions were performed by the use of "Response Surface Methodology". The submerged shaking flasks were utilized as a nutrients growth medium to maximize the production of laccase from G. multistipitatum. The minimum incubation time highly influenced the laccase yield from 7 to 15 days via utilization of less cost-effective medium under a promising and eco-friendly method. The morphological effects of rpm on mycelium were examined under compound and scanning electron microscopy. Higher rpm (200, 230) shear the mycelium, while 150 to 200 rpm exhibited smoother and highly dense branches of mycelia. CONCLUSION: The shear forces of 200 rpm caused the damages of mycelium and cells autolysis with less laccase production. This study concluded that 150 rpm saved the life of mycelium and enhanced the production rate of enzymes.


Assuntos
Ganoderma , Lacase , Oxigênio , Filogenia , Fermentação , Micélio , Reatores Biológicos , Meios de Cultura
6.
BMC Plant Biol ; 23(1): 522, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891469

RESUMO

AIMS: Salinity adversely affects okra [Abelmoschus esculentus (L.) Moench] plants by inducing osmotic and oxidative stresses. This study was designed to enhance salinity-induced osmotic and oxidative stress tolerance in okra plants by applying organic amendments. METHODS: The effects of different organic amendments (municipal solid waste compost, farmyard manure (FYM) and press mud) on osmotic potential, water use efficiency, activities of antioxidant enzymes, total soluble sugar, total soluble proline, total soluble protein and malondialdehyde (MDA) contents of okra plants grown under saline conditions (50 mM sodium chloride) were evaluated in a pot experiment. The organic amendments were applied each at the rate of 5% and 10% per pot or in various combinations (compost + FYM, FYM + press mud and compost + press mud each at the rate of 2.5% and 5% per pot). RESULTS: As compared to control, high total soluble sugar (60.41), total soluble proline (33.88%) and MDA (51%) contents and increased activities of antioxidant enzymes [superoxide dismutase (83.54%), catalase (78.61%), peroxidase (53.57%] in salinity-stressed okra plants, were indicative of oxidative stress. Salinity significantly reduced the osmotic potential (41.78%) and water use efficiency (4.75%) of okra plants compared to control. Under saline conditions, 5% (farmyard manure + press mud) was the most effective treatment, which significantly improved osmotic potential (27.05%), total soluble sugar (4.20%), total soluble protein (73.62%) and total soluble proline (23.20%) contents and superoxide dismutase activity (32.41%), compared to saline soil. Application of 2.5% (FYM + press mud), 5% press mud, and 10% compost significantly reduced MDA content (27%) and improved activities of catalase (38.64%) and peroxidase (48.29%), respectively, compared to saline soil, thus facilitated to alleviate oxidative stress in okra plants. CONCLUSIONS: Using organic amendments (municipal solid waste compost, farmyard manure and press mud) was a cost-effective approach to improve salinity-induced osmotic and oxidative stress tolerance in okra plants.


Assuntos
Abelmoschus , Antioxidantes , Catalase/metabolismo , Antioxidantes/metabolismo , Salinidade , Esterco , Resíduos Sólidos , Estresse Oxidativo , Solo , Peroxidases/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Água/metabolismo , Açúcares/metabolismo
7.
Sci Rep ; 13(1): 15191, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709782

RESUMO

Avena sativa L. a cereal crop that is badly affected by several abiotic and biotic stresses. In the current study, silicon nanoparticles are used to mitigate the harmful effects of root rot disease caused by Rhizoctonia solani Kuhn on the growth of A. sativa. In vitro (Petri plates) and in vivo (pots experiment) were performed to measure the various physiological and biochemical parameters i.e. osmotic potential, chlorophyll, proline content, growth parameters, sugar, fresh and dry weight, and disease index. Results revealed that physiological and biochemical parameters were reduced under fungal stress with silicon nanoparticles treatment as compared to the control group. Si nanoparticles helped to alleviate the negative effects caused by fungus i.e. germination percentage upto 80%, germination rate 4 n/d, radical and plumule length was 4.02 and 5.46, dry weight 0.08 g, and relative water content was (50.3%) increased. Fungus + Si treatment showed the maximum protein content, i.e. 1.2 µg/g as compared to Fungus (0.3 µg/g) treated group. The DI was maximum (78.82%) when the fungus directly attacked the target plant and DI reduced (44.2%) when the fungus was treated with Si nanoparticles. Thus, silicon nanoparticles were potentially effective against the stress of R. solani and also used to analyze the plant resistance against fungal diseases. These particles can use as silicon fertilizers, but further studies on their efficacy under field conditions and improvement in their synthesis are still needed.


Assuntos
Avena , Silício , Silício/farmacologia , Estresse Fisiológico
8.
JCO Glob Oncol ; 9: e2200406, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37348033

RESUMO

PURPOSE: Access to radiotherapy (RT) is now one of the stark examples of global cancer inequities. More than 800,000 new cancer cases require potentially curative or palliative RT services in Africa, arguably <15% of these patients currently have access to this important service. For a population of more than 206 million, Nigeria requires a minimum of 280 RT machines for the increasing number of cancer cases. Painfully, the country has only eight Government-funded RT machines. This study aimed to evaluate the status of the eight Government-funded RT services in Nigeria and their ability to deliver effective RT to their patients. METHODS: A survey addressing 10 critical areas was used to assess the eight Government-funded RT services in Nigeria. RESULTS: Unfortunately, six of the eight centers (75%) surveyed have not treated patients with RT because they do not have functioning teletherapy machines in 2021. Only two RT centers have the capability of treating patients using advanced RT techniques. There is no positron emission tomography-computed tomography scan in any of the Government-funded RT centers. The workforce capacity and infrastructure across the eight centers are limited. All of the centers lack residency training programs for medical physicists and radiation therapy technologists resulting in very few well-trained staff. CONCLUSION: As the Nigerian Government plans for the new National Cancer Control Plan, there is an urgent need to scale up access to RT by upgrading the RT equipment, workforce, and infrastructure to meet the current needs of Nigerian patients with cancer. Although the shortfall is apparent from a variety of RT-capacity databases, this detailed analysis provides essential information for an implementation plan involving solutions from within Nigeria and with global partners.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Nigéria/epidemiologia , Recursos Humanos , Neoplasias/radioterapia , Inquéritos e Questionários
9.
Front Microbiol ; 14: 1291904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38352061

RESUMO

Integrating fungi into fuel cell systems presents a promising opportunity to address environmental pollution while simultaneously generating energy. This review explores the innovative concept of constructing wetlands as fuel cells for pollutant degradation, offering a practical and eco-friendly solution to pollution challenges. Fungi possess unique capabilities in producing power, fuel, and electricity through metabolic processes, drawing significant interest for applications in remediation and degradation. Limited data exist on fungi's ability to generate electricity during catalytic reactions involving various enzymes, especially while remediating pollutants. Certain species, such as Trametes versicolor, Ganoderma lucidum, Galactomyces reessii, Aspergillus spp., Kluyveromyce smarxianus, and Hansenula anomala, have been reported to generate electricity at 1200 mW/m3, 207 mW/m2, 1,163 mW/m3, 438 mW/m3, 850,000 mW/m3, and 2,900 mW/m3, respectively. Despite the eco-friendly potential compared to conventional methods, fungi's role remains largely unexplored. This review delves into fungi's exceptional potential as fuel cell catalysts, serving as anodic or cathodic agents to mitigate land, air, and water pollutants while simultaneously producing fuel and power. Applications cover a wide range of tasks, and the innovative concept of wetlands designed as fuel cells for pollutant degradation is discussed. Cost-effectiveness may vary depending on specific contexts and applications. Fungal fuel cells (FFCs) offer a versatile and innovative solution to global challenges, addressing the increasing demand for alternative bioenergy production amid population growth and expanding industrial activities. The mechanistic approach of fungal enzymes via microbial combinations and electrochemical fungal systems facilitates the oxidation of organic substrates, oxygen reduction, and ion exchange membrane orchestration of essential reactions. Fungal laccase plays a crucial role in pollutant removal and monitoring environmental contaminants. Fungal consortiums show remarkable potential in fine-tuning FFC performance, impacting both power generation and pollutant degradation. Beyond energy generation, fungal cells effectively remove pollutants. Overall, FFCs present a promising avenue to address energy needs and mitigate pollutants simultaneously.

10.
Front Plant Sci ; 13: 994306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237509

RESUMO

Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential nutrient for cotton production and supports efficient crop production. It is a crucial nutrient that is required more than any other. Nitrogen management is a daunting task for plants; thus, various strategies, individually and collectively, have been adopted to improve its efficacy. The negative environmental impacts of excessive N application on cotton production have become harmful to consumers and growers. The 4R's of nutrient stewardship (right product, right rate, right time, and right place) is a newly developed agronomic practice that provides a solid foundation for achieving nitrogen use efficiency (NUE) in cotton production. Cropping systems are equally crucial for increasing production, profitability, environmental growth protection, and sustainability. This concept incorporates the right fertilizer source at the right rate, time, and place. In addition to agronomic practices, molecular approaches are equally important for improving cotton NUE. This could be achieved by increasing the efficacy of metabolic pathways at the cellular, organ, and structural levels and NUE-regulating enzymes and genes. This is a potential method to improve the role of N transporters in plants, resulting in better utilization and remobilization of N in cotton plants. Therefore, we suggest effective methods for accelerating NUE in cotton. This review aims to provide a detailed overview of agronomic and molecular approaches for improving NUE in cotton production, which benefits both the environment and growers.

11.
Front Plant Sci ; 13: 806781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386669

RESUMO

The application of nanoparticles (NPs) has been proved as an efficient and promising technique for mitigating a wide range of stressors in plants. The present study elucidates the synergistic effect of iron oxide nanoparticles (IONPs) and silicon nanoparticles (SiNPs) in the attenuation of Cd toxicity in Phaseolus vulgaris. Seeds of P. vulgaris were treated with IONPs (10 mg/L) and SiNPs (20 mg/L). Seedlings of uniform size were transplanted to pots for 40 days. The results demonstrated that nanoparticles (NPs) enhanced growth, net photosynthetic rate, and gas exchange attributes in P. vulgaris plants grown in Cd-contaminated soil. Synergistic application of IONPs and SiNPs raised not only K+ content, but also biosynthesis of polyamines (PAs), which alleviated Cd stress in P. vulgaris seedlings. Additionally, NPs decreased malondialdehyde (MDA) content and electrolyte leakage (EL) in P. vulgaris plants exposed to Cd stress. These findings suggest that stress alleviation was mainly attributed to the enhanced accumulation of K+ content, improved antioxidant defense system, and higher spermidine (Spd) and putrescine (Put) levels. It is suggested that various forms of NPs can be applied synergistically to minimize heavy metal stress, thus increasing crop production under stressed conditions.

12.
Sci Rep ; 12(1): 2416, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165332

RESUMO

The aim of this work to study an efficient laccase producing fungus Ganoderma leucocontextum, which was identified by ITS regions of DNA and phylogenetic tree was constructed. This study showed the laccase first-time from G. leucocontextum by using medium containing guaiacol. The growth cultural (pH, temperature, incubation days, rpm) and nutritional (carbon and nitrogen sources) conditions were optimized, which enhanced the enzyme production up to 4.5-folds. Laccase production increased 855 U/L at 40 °C. The pH 5.0 was suitable for laccase secretion (2517 U/L) on the 7th day of incubation at 100 rpm (698.3 U/L). Glucose and sucrose were good carbon source to enhance the laccase synthesis. The 10 g/L beef (4671 U/L) and yeast extract (5776 U/L) were the best nitrogen source for laccase secretion from G. leucocontextum. The laccase was purified from the 80% ammonium sulphate precipitations of protein identified by nucleotides sequence. The molecular weight (65.0 kDa) of purified laccase was identified through SDS and native PAGE entitled as Glacc110. The Glacc110 was characterized under different parameters. It retained > 90% of its activity for 16 min incubation at 60 °C in acidic medium (pH 4.0). This enzyme exerted its optimal activity at pH 3.0 and temperature 70 °C with guaiacol substrate. The catalytic parameters Km and Vmax was 1.658 (mM) and 2.452 (mM/min), respectively. The thermo stability of the laccase produced by submerged fermentation of G. leucocontextum has potential for industrial and biotechnology applications. The results remarked the G. leucocontextum is a good source for laccase production.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ganoderma/enzimologia , Lacase/química , Lacase/metabolismo , Filogenia , Sequência de Bases , Precipitação Química , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Ganoderma/química , Ganoderma/classificação , Ganoderma/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Lacase/isolamento & purificação
13.
Arch Microbiol ; 203(7): 4319-4327, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110483

RESUMO

Laccases have high biotechnological potential in industries since they catalyze the oxidation of many chemical compounds. The production of laccases by fungi has been extensively studied due to their secretion of enzymes and rapid growth using cheap substrates. Trichoderma; the versatile fungal genus includes species of great biotechnological value and considered as a magnificent industrial cell factory of enzymes. In this study, 10 Trichoderma species were screened for laccase enzyme production by submerged cultivation. The studied species were identified by internal transcribed spacer (ITS) gene sequences. Guaiacol (0.04%) as an enzyme substrate in plate medium was used for the selection of maximum laccase-enriched Trichoderma species by formation of visual color halo intensity. This activity was evaluated by liquid submersion (flask medium) also. The absorbance of laccase contained broth was measured by a spectrophotometer (450 nm). The highest laccase production was obtained by T. atroviride (2.62 U/mL). Trichoderma cremeum and T. longipile showed medium laccase potency, while T. beinartii exhibited weak laccase secretion ability. Laccase from T. atroviride was purified by SDS-PAGE and the molecular weight was determined (57 kDa). The laccase was confirmed by their respective amino acid sequences, and the phylogenetic tree was constructed for further analysis.


Assuntos
Lacase , Filogenia , Trichoderma , Lacase/genética , Lacase/metabolismo , Oxirredução , Trichoderma/classificação , Trichoderma/enzimologia , Trichoderma/genética
14.
Stud Health Technol Inform ; 209: 175-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25980722

RESUMO

The empowerment of citizens in relation to personal healthcare management includes consideration of a multi-faceted collection of elements. Simplistic forms of understanding which link empowerment to access provide limited acknowledgement of the requirement to facilitate a greater sense of health ownership in patients and collaborative working practices in practitioners. More complex attitudes to the delivery of empowered patients encompassing knowledge development, technological awareness and partnership approaches to healthcare delivery are steps in the right direction, but strain to fit currently emerging ideas around patient centered care. This paper posits that existing frameworks aimed at empowering patients for a patient centered ehealth system are insufficiently presented. The frameworks, which are mostly premised on an inequitable focus, fail to factor in the invaluableness of holism and technological innovation. Through a review of existing frameworks and an articulation of patient demands, weaknesses in current structures to support empowerment are explored, and key constituents of a framework for patient empowerment are determined. Consequently, the paper articulates a model focused around delivering an empowered patient in the 21(st) century healthcare system.


Assuntos
Atenção à Saúde/organização & administração , Modelos Organizacionais , Objetivos Organizacionais , Participação do Paciente/métodos , Satisfação do Paciente , Assistência Centrada no Paciente/organização & administração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA