Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Digit Health ; 6(8): e595-e600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987117

RESUMO

The rapid evolution of generative artificial intelligence (AI) models including OpenAI's ChatGPT signals a promising era for medical research. In this Viewpoint, we explore the integration and challenges of large language models (LLMs) in digital pathology, a rapidly evolving domain demanding intricate contextual understanding. The restricted domain-specific efficiency of LLMs necessitates the advent of tailored AI tools, as illustrated by advancements seen in the last few years including FrugalGPT and BioBERT. Our initiative in digital pathology emphasises the potential of domain-specific AI tools, where a curated literature database coupled with a user-interactive web application facilitates precise, referenced information retrieval. Motivated by the success of this initiative, we discuss how domain-specific approaches substantially minimise the risk of inaccurate responses, enhancing the reliability and accuracy of information extraction. We also highlight the broader implications of such tools, particularly in streamlining access to scientific research and democratising access to computational pathology techniques for scientists with little coding experience. This Viewpoint calls for an enhanced integration of domain-specific text-generation AI tools in academic settings to facilitate continuous learning and adaptation to the dynamically evolving landscape of medical research.


Assuntos
Inteligência Artificial , Humanos , Pesquisa Biomédica , Patologia
2.
J Clin Oncol ; 42(11): 1311-1321, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38207230

RESUMO

PURPOSE: Although immune checkpoint inhibitors (ICI) have extended survival in patients with non-small-cell lung cancer (NSCLC), acquired resistance (AR) to ICI frequently develops after an initial benefit. However, the mechanisms of AR to ICI in NSCLC are largely unknown. METHODS: Comprehensive tumor genomic profiling, machine learning-based assessment of tumor-infiltrating lymphocytes, multiplexed immunofluorescence, and/or HLA-I immunohistochemistry (IHC) were performed on matched pre- and post-ICI tumor biopsies from patients with NSCLC treated with ICI at the Dana-Farber Cancer Institute who developed AR to ICI. Two additional cohorts of patients with intervening chemotherapy or targeted therapies between biopsies were included as controls. RESULTS: We performed comprehensive genomic profiling and immunophenotypic characterization on samples from 82 patients with NSCLC and matched pre- and post-ICI biopsies and compared findings with a control cohort of patients with non-ICI intervening therapies between biopsies (chemotherapy, N = 32; targeted therapies, N = 89; both, N = 17). Putative resistance mutations were identified in 27.8% of immunotherapy-treated cases and included acquired loss-of-function mutations in STK11, B2M, APC, MTOR, KEAP1, and JAK1/2; these acquired alterations were not observed in the control groups. Immunophenotyping of matched pre- and post-ICI samples demonstrated significant decreases in intratumoral lymphocytes, CD3e+ and CD8a+ T cells, and PD-L1-PD1 engagement, as well as increased distance between tumor cells and CD8+PD-1+ T cells. There was a significant decrease in HLA class I expression in the immunotherapy cohort at the time of AR compared with the chemotherapy (P = .005) and the targeted therapy (P = .01) cohorts. CONCLUSION: These findings highlight the genomic and immunophenotypic heterogeneity of ICI resistance in NSCLC, which will need to be considered when developing novel therapeutic strategies aimed at overcoming resistance.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genômica , Imunofenotipagem , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico
3.
Nat Mach Intell ; 5(7): 799-810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706981

RESUMO

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA