Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 85, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090729

RESUMO

Sitosterolemia is a rare inherited disorder caused by mutations in the ABCG5/ABCG8 genes. These genes encode proteins involved in the transport of plant sterols. Mutations in these genes lead to decreased excretion of phytosterols, which can accumulate in the body and lead to a variety of health problems, including premature coronary artery disease. We conducted the first genome-wide association study (GWAS) in the Middle East/North Africa population to identify genetic determinants of plant sterol levels in Qatari people. GWAS was performed on serum levels of ß-sitosterol and campesterol using the Metabolon platform from Qatar Biobank (QBB) and genome sequence data provided by Qatar Genome Program. A trans-ancestry meta-analysis of data from our Qatari cohort with summary statistics from a previously published large cohort (9758 subjects) of European ancestry was conducted. Using conditional analysis, we identified two independent single nucleotide polymorphisms associated with ß-sitosterol (rs145164937 and rs4299376), and two others with campesterol (rs7598542 and rs75901165) in the Qatari population in addition to previously reported variants. All of them map to the ABCG5/8 locus except rs75901165 which is located within the Intraflagellar Transport 43 (IFT43) gene. The meta-analysis replicated most of the reported variants, and our study provided significant support for the association of variants in SCARB1 and ABO with sitosterolemia. Evaluation of a polygenic risk score devised from European GWAS data showed moderate performance when applied to QBB (adjusted-R2 = 0.082). These findings provide new insights into the genetic architecture of phytosterol metabolism while showing the importance including under-represented populations in future GWAS studies.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Estudo de Associação Genômica Ampla , Erros Inatos do Metabolismo Lipídico , Fitosteróis , Polimorfismo de Nucleotídeo Único , Sitosteroides , Humanos , Fitosteróis/sangue , Fitosteróis/genética , Fitosteróis/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Sitosteroides/sangue , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/sangue , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Masculino , Feminino , Enteropatias/genética , Enteropatias/sangue , Adulto , Colesterol/sangue , Colesterol/análogos & derivados , Hipercolesterolemia/genética , Hipercolesterolemia/sangue , Pessoa de Meia-Idade , Lipoproteínas/sangue , Lipoproteínas/genética , Transportadores de Cassetes de Ligação de ATP/genética
2.
Front Endocrinol (Lausanne) ; 15: 1384103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938516

RESUMO

Insulin resistance (IR) and beta cell dysfunction are the major drivers of type 2 diabetes (T2D). Genome-Wide Association Studies (GWAS) on IR have been predominantly conducted in European populations, while Middle Eastern populations remain largely underrepresented. We conducted a GWAS on the indices of IR (HOMA2-IR) and beta cell function (HOMA2-%B) in 6,217 non-diabetic individuals from the Qatar Biobank (QBB; Discovery cohort; n = 2170, Replication cohort; n = 4047) with and without body mass index (BMI) adjustment. We also developed polygenic scores (PGS) for HOMA2-IR and compared their performance with a previously derived PGS for HOMA-IR (PGS003470). We replicated 11 loci that have been previously associated with HOMA-IR and 24 loci that have been associated with HOMA-%B, at nominal statistical significance. We also identified a novel locus associated with beta cell function near VEGFC gene, tagged by rs61552983 (P = 4.38 × 10-8). Moreover, our best performing PGS (Q-PGS4; Adj R2 = 0.233 ± 0.014; P = 1.55 x 10-3) performed better than PGS003470 (Adj R2 = 0.194 ± 0.014; P = 5.45 x 10-2) in predicting HOMA2-IR in our dataset. This is the first GWAS on HOMA2 and the first GWAS conducted in the Middle East focusing on IR and beta cell function. Herein, we report a novel locus in VEGFC that is implicated in beta cell dysfunction. Inclusion of under-represented populations in GWAS has potentials to provide important insights into the genetic architecture of IR and beta cell function.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Resistência à Insulina , Herança Multifatorial , Humanos , Resistência à Insulina/genética , Feminino , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/genética , Adulto , Catar/epidemiologia , Polimorfismo de Nucleotídeo Único , Células Secretoras de Insulina/metabolismo , Idoso , Índice de Massa Corporal , Estudos de Coortes , Predisposição Genética para Doença
4.
BMC Med Genomics ; 17(1): 115, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685053

RESUMO

BACKGROUND: The genetic basis of type 2 diabetes (T2D) is under-investigated in the Middle East, despite the rapidly growing disease prevalence. We aimed to define the genetic determinants of T2D in Qatar. METHODS: Using whole genome sequencing of 11,436 participants (2765 T2D cases and 8671 controls) from the population-based Qatar Biobank (QBB), we conducted a genome-wide association study (GWAS) of T2D with and without body mass index (BMI) adjustment. RESULTS: We replicated 93 known T2D-associated loci in a BMI-unadjusted model, while 96 known loci were replicated in a BMI-adjusted model. The effect sizes and allele frequencies of replicated SNPs in the Qatari population generally concurred with those from European populations. We identified a locus specific to our cohort located between the APOBEC3H and CBX7 genes in the BMI-unadjusted model. Also, we performed a transethnic meta-analysis of our cohort with a previous GWAS on T2D in multi-ancestry individuals (180,834 T2D cases and 1,159,055 controls). One locus in DYNC2H1 gene reached genome-wide significance in the meta-analysis. Assessing polygenic risk scores derived from European- and multi-ancestries in the Qatari population showed higher predictive performance of the multi-ancestry panel compared to the European panel. CONCLUSION: Our study provides new insights into the genetic architecture of T2D in a Middle Eastern population and identifies genes that may be explored further for their involvement in T2D pathogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Diabetes Mellitus Tipo 2/genética , Catar/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Loci Gênicos , Estudos de Casos e Controles , Índice de Massa Corporal , Etnicidade/genética
5.
Front Nutr ; 10: 1242257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841410

RESUMO

Introduction: Epidemiological studies have consistently revealed that Vitamin D deficiency is most prevalent in Middle Eastern countries. However, research on the impact of genetic loci and polygenic models related to Vitamin D has primarily focused on European populations. Methods: We conducted the first genome-wide association study to identify genetic determinants of Vitamin D levels in Middle Easterners using a whole genome sequencing approach in 6,047 subjects from the Qatar Biobank (QBB) project. We performed a GWAS meta-analysis, combining the QBB cohort with recent European GWAS data from the UK Biobank (involving 345,923 individuals). Additionally, we evaluated the performance of European-derived polygenic risk scores using UK Biobank data in the QBB cohort. Results: Our study identified an association between a variant in a known locus for the group-specific component gene (GC), specifically rs2298850 (p-value = 1.71 × 10-08, Beta = -0.1285), and Vitamin D levels. Furthermore, our GWAS meta-analysis identified two novel variants at a known locus on chromosome 11, rs67609747 and rs1945603, that reached the GWAS significance threshold. Notably, we observed a moderately high heritability of Vitamin D, estimated at 18%, compared to Europeans. Despite the lower predictive performance of Vitamin D levels in Qataris compared to Europeans, the European-derived polygenic risk scores exhibited significant links to Vitamin D deficiency risk within the QBB cohort. Conclusion: This novel study reveals the genetic architecture contributing to Vitamin D deficiency in the Qatari population, emphasizing the genetic heterogeneity across different populations.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36728277

RESUMO

Growth disorders resulting in extreme short stature are often a result of deficiency in growth hormone released from the pituitary gland or defective growth hormone releasing receptor. Genetic defects in the GH1 and GHRHR genes account for around 11.1-20% of extreme short stature cases, resulting in a rare condition called Isolated Growth Hormone Deficiency. We describe the characterization of a GH1 genetic defect discovered in a 3-year-old male patient with extreme short stature, developmental failure and undetectable serum levels of growth hormone. There is a familial history of short stature with both parents being short. Whole genome sequencing of the patient DNA revealed a large novel 6 kb homozygous deletion spanning the entire GH1 gene in the patient. While the deletion was homozygous in the subjects, it was found in a heterozygous state in the parents. Thus we report a novel homozygous deletion including the GH1 gene leading to Isolated Growth Hormone Deficiency- Type 1A associated with extreme short stature.

7.
NPJ Genom Med ; 7(1): 10, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169154

RESUMO

Clinical implementation of pharmacogenomics will help in personalizing drug prescriptions and alleviate the personal and financial burden due to inefficacy and adverse reactions to drugs. However, such implementation is lagging in many parts of the world, including the Middle East, mainly due to the lack of data on the distribution of actionable pharmacogenomic variation in these ethnicities. We analyzed 6,045 whole genomes from the Qatari population for the distribution of allele frequencies of 2,629 variants in 1,026 genes known to affect 559 drugs or classes of drugs. We also performed a focused analysis of genotypes or diplotypes of 15 genes affecting 46 drugs, which have guidelines for clinical implementation and predicted their phenotypic impact. The allele frequencies of 1,320 variants in 703 genes affecting 299 drugs or class of drugs were significantly different between the Qatari population and other world populations. On average, Qataris carry 3.6 actionable genotypes/diplotypes, affecting 13 drugs with guidelines for clinical implementation, and 99.5% of the individuals had at least one clinically actionable genotype/diplotype. Increased risk of simvastatin-induced myopathy could be predicted in ~32% of Qataris from the diplotypes of SLCO1B1, which is higher compared to many other populations, while fewer Qataris may need tacrolimus dosage adjustments for achieving immunosuppression based on the CYP3A5 diplotypes compared to other world populations. Distinct distribution of actionable pharmacogenomic variation was also observed among the Qatari subpopulations. Our comprehensive study of the distribution of actionable genetic variation affecting drugs in a Middle Eastern population has potential implications for preemptive pharmacogenomic implementation in the region and beyond.

8.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34498682

RESUMO

Rare diseases occur in a smaller proportion of the general population, which is variedly defined as less than 200 000 individuals (US) or in less than 1 in 2000 individuals (Europe). Although rare, they collectively make up to approximately 7000 different disorders, with majority having a genetic origin, and affect roughly 300 million people globally. Most of the patients and their families undergo a long and frustrating diagnostic odyssey. However, advances in the field of genomics have started to facilitate the process of diagnosis, though it is hindered by the difficulty in genome data analysis and interpretation. A major impediment in diagnosis is in the understanding of the diverse approaches, tools and datasets available for variant prioritization, the most important step in the analysis of millions of variants to select a few potential variants. Here we present a review of the latest methodological developments and spectrum of tools available for rare disease genetic variant discovery and recommend appropriate data interpretation methods for variant prioritization. We have categorized the resources based on various steps of the variant interpretation workflow, starting from data processing, variant calling, annotation, filtration and finally prioritization, with a special emphasis on the last two steps. The methods discussed here pertain to elucidating the genetic basis of disease in individual patient cases via trio- or family-based analysis of the genome data. We advocate the use of a combination of tools and datasets and to follow multiple iterative approaches to elucidate the potential causative variant.


Assuntos
Análise de Dados , Doenças Raras , Estudos de Associação Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Software
9.
Front Endocrinol (Lausanne) ; 12: 783235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185781

RESUMO

We describe a sporadic case of a pure, tandem, interstitial chromosome 4q duplication, arr[hg19] 4q28.1q32.3 (127,008,069-165,250,477) x3 in a boy born at 36 weeks of gestation. He presented with microcephaly (head circumference <1st percentile), short stature (height <2nd percentile) and poor weight gain (weight <3rd percentile). Hypospadias and horseshoe shaped kidneys were also revealed following a urinary tract ultrasound. Biochemical analysis revealed normal growth hormone and thyroid hormone levels. While gross and fine motor skill development was in line with his age, speech delay was observed. This patient adds to a group of more than 30 cases of pure 4q tandem duplication with common and differing phenotypic presentations. Using a retrospective analysis of previous case studies alongside the current case and bioinformatics analysis of the duplicated region, we deduced the most likely dosage sensitive genes for some of the major phenotypes in the patient. The positive predictive value (PPV) was calculated for each gene and phenotype and was derived by comparing the previously reported patients who have gene duplications and an associated phenotype versus those who had the gene duplications but were unaffected. Thus, the growth retardation phenotype may be associated with NAA15 duplication, speech delay with GRIA2 and microcephaly with PLK4 duplication. Functional studies will help in confirming the observations and elucidating the mechanisms. However, our study highlights the importance of analysing case reports with pure duplications in defining phenotype-gene relationships and in improving our knowledge of the function of precise chromosomal regions.


Assuntos
Transtornos do Desenvolvimento da Linguagem , Microcefalia , Duplicação Cromossômica/genética , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Microcefalia/genética , Fenótipo , Proteínas Serina-Treonina Quinases , Estudos Retrospectivos
10.
Microbiome ; 6(1): 55, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29562936

RESUMO

BACKGROUND: Gut microbiota composition and function are symbiotically linked with host health and altered in metabolic, inflammatory and neurodegenerative disorders. Three recognised mechanisms exist by which the microbiome influences the gut-brain axis: modification of autonomic/sensorimotor connections, immune activation, and neuroendocrine pathway regulation. We hypothesised interactions between circulating gut-derived microbial metabolites, and the blood-brain barrier (BBB) also contribute to the gut-brain axis. Propionate, produced from dietary substrates by colonic bacteria, stimulates intestinal gluconeogenesis and is associated with reduced stress behaviours, but its potential endocrine role has not been addressed. RESULTS: After demonstrating expression of the propionate receptor FFAR3 on human brain endothelium, we examined the impact of a physiologically relevant propionate concentration (1 µM) on BBB properties in vitro. Propionate inhibited pathways associated with non-specific microbial infections via a CD14-dependent mechanism, suppressed expression of LRP-1 and protected the BBB from oxidative stress via NRF2 (NFE2L2) signalling. CONCLUSIONS: Together, these results suggest gut-derived microbial metabolites interact with the BBB, representing a fourth facet of the gut-brain axis that warrants further attention.


Assuntos
Bactérias/metabolismo , Barreira Hematoencefálica/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Propionatos/metabolismo , Células Cultivadas , Gluconeogênese/fisiologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Metaboloma/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Receptores Acoplados a Proteínas G/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA