RESUMO
The widespread resistance to antibiotics in pathogenic bacteria makes the development of a new generation of antimicrobials an urgent task. The development of new antibiotics must be accompanied by a comprehensive study of all of their biological activities in order to avoid adverse side-effects from their application. Some promising antibiotic prototypes derived from the structures of arenicins, antimicrobial peptides from the lugworm Arenicola marina, have been developed. Previously, we described the ability of natural arenicins -1 and -2 to modulate the human complement system activation in vitro. In this regard, it seems important to evaluate the effect of therapeutically promising arenicin analogues on complement activation. Here, we describe the complement-modulating activity of three such analogues, Ar-1[V8R], ALP1, and AA139. We found that the mode of action of Ar-1[V8R] and ALP1 on the complement was similar to that of natural arenicins, which can both activate and inhibit the complement, depending on the concentration. However, Ar-1[V8R] behaved predominantly as an inhibitor, showing only a moderate increase in C3a production in the alternative pathway model and no enhancement at all of the classical pathway of complement activation. In contrast, the action of ALP1 was characterized by a marked increase in the complement activation through the classical pathway in the concentration range of 2.5-20 µg/mL. At the same time, at higher concentrations (80-160 µg/mL), this peptide exhibited a complement inhibitory effect characteristic of the other arenicins. Peptide AA139, like other arenicins, exhibited an inhibitory effect on complement at a concentration of 160 µg/mL, but was much less pronounced. Overall, our results suggest that the effect on the complement system should be taken into account in the development of antibiotics based on arenicins.
Assuntos
Poliquetos , Animais , Humanos , Poliquetos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Estudos Prospectivos , Proteínas de Helminto/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ativação do ComplementoRESUMO
Antimicrobial peptides (AMPs) are not only cytotoxic towards host pathogens or cancer cells but also are able to act as immunomodulators. It was shown that some human and non-human AMPs can interact with complement proteins and thereby modulate complement activity. Thus, AMPs could be considered as the base for complement-targeted therapeutics development. Arenicins from the sea polychaete Arenicola marina, the classical example of peptides with a ß-hairpin structure stabilized by a disulfide bond, were shown earlier to be among the most prospective regulators. Here, we investigate the link between arenicins' structure and their antimicrobial, hemolytic and complement-modulating activities using the derivative Ar-1-(C/A) without a disulfide bond. Despite the absence of this bond, the peptide retains all important functional activities and also appears less hemolytic in comparison with the natural forms. These findings could help to investigate new complement drugs for regulation using arenicin derivatives.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Proteínas de Helminto/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Inativadores do Complemento/química , Inativadores do Complemento/toxicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Helminto/química , Proteínas de Helminto/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Conformação Proteica , Coelhos , Carneiro Doméstico , Relação Estrutura-AtividadeRESUMO
Proline-rich antimicrobial peptides (PR-AMPs) having a potent antimicrobial activity predominantly toward Gram-negative bacteria and negligible toxicity toward host cells, are attracting attention as new templates for developing antibiotic drugs. We have previously isolated and characterized several bactenecins that are promising in this respect, from the leukocytes of the domestic goat Capra hircus: ChBac5, miniChBac7.5N-α, and -ß, as well as ChBac3.4. Unlike the others, ChBac3.4 shows a somewhat unusual pattern of activities for a mammalian PR-AMP: it is more active against bacterial membranes as well as tumor and, to the lesser extent, normal cells. Here we describe a SAR study of ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL-NH2) which elucidates its peculiarities and evaluates its potential as a lead for antimicrobial or anticancer drugs based on this peptide. A set of designed structural analogues of ChBac3.4 was explored for antibacterial activity toward drug-resistant clinical isolates and antitumor properties. The N-terminal region was found to be important for the antimicrobial action, but not responsible for the toxicity toward mammalian cells. A shortened variant with the best selectivity index toward bacteria demonstrated a pronounced synergy in combination with antibiotics against Gram-negative strains, albeit with a somewhat reduced ability to inhibit biofilm formation compared to native peptide. C-terminal amidation was examined for some analogues, which did not affect antimicrobial activity, but somewhat altered the cytotoxicity toward host cells. Interestingly, non-amidated peptides showed a slight delay in their impact on bacterial membrane integrity. Peptides with enhanced hydrophobicity showed increased toxicity, but in most cases their selectivity toward tumor cells also improved. While most analogues lacked hemolytic properties, a ChBac3.4 variant with two additional tryptophan residues demonstrated an appreciable activity toward human erythrocytes. The variant demonstrating the best tumor/nontumor cell selectivity was found to more actively initiate apoptosis in target cells, though its action was slower than that of the native ChBac3.4. Its antitumor effectiveness was successfully verified in vivo in a murine Ehrlich ascites carcinoma model. The obtained results demonstrate the potential of structural modification to manage caprine bactenecins' selectivity and activity spectrum and confirm that they are promising prototypes for antimicrobial and anticancer drugs design.
Assuntos
Anti-Infecciosos , Antineoplásicos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Cabras , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos CíclicosRESUMO
Antimicrobial peptides (AMPs) were firstly discovered as cytotoxic substances that killed bacteria. Later they were described as biologically active peptides that are able not only to kill invaders but also to modulate host immunity. In particular, it is shown that human antimicrobial peptides are able to influence the activity of different innate and adaptive immunity components, thus, obviously, they also participate in autoimmune processes. In this review we discuss the nature of human AMPs and analyze their role in such autoimmune disorders like type 1 diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and sarcoidosis. These peptides were shown to have a "double-sided" influence on the autoimmune disease pathogenesis. Thus, described facts should be taken into account for the development of new pharmaceutical agents to cure patients with autoimmune disorders. These agents could derive from natural antimicrobial peptides that in some cases modulate immune response. For example, it was shown that human AMPs are able to modulate complement system dysregulation of which is known to be one of the most dangerous pathogenic factors during autoimmune processes.
Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Imunidade Adaptativa/imunologia , Animais , Humanos , Imunidade Inata/imunologiaRESUMO
Antimicrobial peptides from marine invertebrates are known not only to act like cytotoxic agents, but they also can display some additional activities in mammalian organisms. In particular, these peptides can modulate the complement system as was described for tachyplesin, a peptide from the horseshoe crab. In this work, we investigated the influence on complement activation of the antimicrobial peptide arenicin-1 from the marine polychaete Arenicola marina. To study effects of arenicin on complement activation in human blood serum, we used hemolytic assays of two types, with antibody sensitized sheep erythrocytes and rabbit erythrocytes. Complement activation was also assessed, by the level of C3a production that was measured by ELISA. We found that the effect of arenicin depends on its concentration. At relatively low concentrations the peptide stimulates complement activation and lysis of target erythrocytes, whereas at higher concentrations arenicin acts as a complement inhibitor. A hypothetical mechanism of peptide action is proposed, suggesting its interaction with two complement proteins, C1q and C3. The results lead to the possibility of the development of new approaches for therapy of diseases connected with complement dysregulation, using peptide regulators derived from natural antimicrobial peptides of invertebrates.