Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 312(Pt 1): 137175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370761

RESUMO

In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials.


Assuntos
Retardadores de Chama , Plásticos , Plásticos/química , Reciclagem/métodos , Têxteis , Indústrias
2.
Nanotoxicology ; 14(3): 420-432, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31994971

RESUMO

Silicon dioxide (silica, SiO2, SAS) and titanium dioxide (TiO2) are produced in high volumes and applied in many consumer and food products. As a consequence, there is a potential human exposure and subsequent systemic uptake of these particles. In this study we show the characterization and quantification of both total silicon (Si) and titanium (Ti), and particulate SiO2 and TiO2 in postmortem tissue samples from 15 deceased persons. Included tissues are liver, spleen, kidney and the intestinal tissues jejunum and ileum. Low-level analysis was enabled by the use of fully validated sample digestion methods combined with (single particle) inductively coupled plasma high resolution mass spectrometry techniques (spICP-HRMS). The results show a total-Si concentration ranging from <2 to 191 mg Si/kg (median values of 5.8 (liver), 9.5 (spleen), 7.7 (kidney), 6.8 (jejunum), 7.6 (ileum) mg Si/kg) while the particulate SiO2 ranged from <0.2 to 25 mg Si/kg (median values of 0.4 (liver), 1.0 (spleen), 0.4 (kidney), 0.7 (jejunum, 0.6 (ileum) mg Si/kg), explaining about 10% of the total-Si concentration. Particle sizes ranged from 150 to 850 nm with a mode of 270 nm. For total-Ti the results show concentrations ranging from <0.01 to 2.0 mg Ti/kg (median values of 0.02 (liver), 0.04 (spleen), 0.05 (kidney), 0.13 (jejunum), 0.26 (ileum) mg Ti/kg) while particulate TiO2 concentrations ranged from 0.01 to 1.8 mg Ti/kg (median values of 0.02 (liver), 0.02 (spleen), 0.03 (kidney), 0.08 (jejunum), 0.25 (ileum) mg Ti/kg). In general, the particulate TiO2 explained 80% of the total-Ti concentration. This indicates that most Ti in these organ tissues is particulate material. The detected particles comprise primary particles, aggregates and agglomerates, and were in the range of 50-500 nm with a mode in the range of 100-160 nm. About 17% of the detected TiO2 particles had a size <100 nm. The presence of SiO2 and TiO2 particles in liver tissue was confirmed by scanning electron microscopy with energy dispersive X-ray spectrometry.


Assuntos
Intestino Delgado/química , Rim/química , Fígado/química , Dióxido de Silício/análise , Baço/química , Titânio/análise , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Tamanho da Partícula , Espectrometria por Raios X , Distribuição Tecidual
3.
Nanotoxicology ; 14(1): 111-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648587

RESUMO

Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250-2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86-92% and 48-70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Trato Gastrointestinal/metabolismo , Células HT29 , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Prata/metabolismo , Nitrato de Prata/química , Nitrato de Prata/metabolismo , Nitrato de Prata/toxicidade , Análise Espectral , Propriedades de Superfície
4.
J Chem Ecol ; 44(7-8): 711-726, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29978430

RESUMO

Phorodon humuli (Damson-hop aphid) is one of the major pests of hops in the northern hemisphere. It causes significant yield losses and reduces hop quality and economic value. Damson-hop aphid is currently controlled with insecticides, but the number of approved pesticides is steadily decreasing. In addition, the use of insecticides almost inevitably results in the development of resistant aphid genotypes. An integrated approach to pest management in hop cultivation is therefore badly needed in order to break this cycle and to prevent the selection of strains resistant to the few remaining registered insecticides. The backbone of such an integrated strategy is the breeding of hop cultivars that are resistant to Damson-hop aphid. However, up to date mechanisms of hops resistance towards Damson-hop aphids have not yet been unraveled. In the experiments presented here, we used metabolite profiling followed by multivariate analysis and show that metabolites responsible for hop aroma and flavor (sesquiterpenes) in the cones can also be found in the leaves, long before the hop cones develop, and may play a role in resistance against aphids. In addition, aphid feeding induced a change in the metabolome of all hop genotypes particularly an increase in a number of oxidized compounds, which suggests this may be part of a resistance mechanism.


Assuntos
Afídeos/fisiologia , Humulus/metabolismo , Humulus/parasitologia , Metaboloma , Metabolômica , Animais , Resistência à Doença , Cromatografia Gasosa-Espectrometria de Massas/métodos , Genótipo , Interações Hospedeiro-Parasita , Humulus/genética , Humulus/crescimento & desenvolvimento , Metabolômica/métodos , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Sesquiterpenos/metabolismo
5.
Sci Total Environ ; 621: 210-218, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29179077

RESUMO

Nano-enabled consumer products are a likely source of nanoparticles in the environment and a number of studies have shown the release of nanoparticles from commercial products. Predicted environmental concentrations have been calculated but there is a need for real measurement data to validate these calculations. However, the detection of engineered nanoparticles in environmental matrices is challenging because of the low predicted environmental concentrations which may be in the ng/L range. In this study nanosized Ag, CeO2 and TiO2 have been measured in multiple surface water samples collected along the rivers Meuse and IJssel in the Netherlands using single-particle ICP-MS as measurement technique. Validation of the analytical method showed its capability to quantitatively determine nanoparticles at low concentrations. Concentration mass detection limits for Ag, CeO2 and TiO2 were 0.1ng/L, 0.05ng/L and 10ng/L respectively. Size detection limits for Ag, CeO2 and TiO2 were 14, 10 and 100nm. The results of the study confirm the presence of nano-sized Ag and CeO2 particles and micro-sized TiO2 particles in these surface waters. n-Ag was present in all samples in concentrations ranging from 0.3 to 2.5ng/L with an average concentration of 0.8ng/L and an average particle size of 15nm. n-CeO2 was found in all samples with concentrations ranging from 0.4 to 5.2ng/L with an average concentration of 2.7ng/L and an average particle size of 19nm. Finally, µ-TiO2 was found in all samples with a concentration ranging from 0.2 to 8.1µg/L with an average concentration of 3.1µg/L and an average particle size of 300nm. The particle sizes that were found are comparable with the particle sizes that are used in nanomaterial applications and consumer products. The nanoparticle concentrations confirm the predicted environmental concentrations values in water for all three nanoparticles.

6.
Nanotoxicology ; 10(10): 1431-1441, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27597447

RESUMO

The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag+ and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Transcriptoma/efeitos dos fármacos , Células CACO-2 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Cinética , Células MCF-7 , Tamanho da Partícula , Prata/metabolismo , Nitrato de Prata/toxicidade , Propriedades de Superfície
7.
Front Plant Sci ; 7: 312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014329

RESUMO

The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.

8.
Nanotoxicology ; 10(2): 173-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26001188

RESUMO

Solubility is an important physicochemical parameter in nanoregulation. If nanomaterial is completely soluble, then from a risk assessment point of view, its disposal can be treated much in the same way as "ordinary" chemicals, which will simplify testing and characterisation regimes. This review assesses potential techniques for the measurement of nanomaterial solubility and evaluates the performance against a set of analytical criteria (based on satisfying the requirements as governed by the cosmetic regulation as well as the need to quantify the concentration of free (hydrated) ions). Our findings show that no universal method exists. A complementary approach is thus recommended, to comprise an atomic spectrometry-based method in conjunction with an electrochemical (or colorimetric) method. This article shows that although some techniques are more commonly used than others, a huge research gap remains, related with the need to ensure data reliability.


Assuntos
Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Nanoestruturas/química , Métodos Analíticos de Preparação de Amostras/métodos , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Modelos Teóricos , Reprodutibilidade dos Testes , Solubilidade , Espectrofotometria Atômica
9.
J Nanopart Res ; 17(5): 231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028989

RESUMO

The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6-12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.

10.
New Phytol ; 187(2): 343-354, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20487312

RESUMO

SUMMARY: *Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). *Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. *The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. *The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis.


Assuntos
Ácido Abscísico/metabolismo , Lactonas/metabolismo , Ácido Abscísico/biossíntese , Vias Biossintéticas/efeitos dos fármacos , Carotenoides/metabolismo , Cromatografia Líquida , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Espectrometria de Massas , Mutação/genética , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Orobanche/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA