Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Circ Cardiovasc Imaging ; 16(10): e015782, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847761

RESUMO

BACKGROUND: Anthracycline-related cardiac toxicity is a recognized consequence of cancer therapies. We assess resting cardiac and skeletal muscle energetics and myocyte, sarcomere, and mitochondrial integrity in patients with breast cancer receiving epirubicin. METHODS: In a prospective, mechanistic, observational, longitudinal study, we investigated chemotherapy-naive patients with breast cancer receiving epirubicin versus sex- and age-matched healthy controls. Resting energetic status of cardiac and skeletal muscle (phosphocreatine/gamma ATP and inorganic phosphate [Pi]/phosphocreatine, respectively) was assessed with 31P-magnetic resonance spectroscopy. Cardiac function and tissue characterization (magnetic resonance imaging and 2D-echocardiography), cardiac biomarkers (serum NT-pro-BNP and high-sensitivity troponin I), and structural assessments of skeletal muscle biopsies were obtained. All study assessments were performed before and after chemotherapy. RESULTS: Twenty-five female patients with breast cancer (median age, 53 years) received a mean epirubicin dose of 304 mg/m2, and 25 age/sex-matched controls were recruited. Despite comparable baseline cardiac and skeletal muscle energetics with the healthy controls, after chemotherapy, patients with breast cancer showed a reduction in cardiac phosphocreatine/gamma ATP ratio (2.0±0.7 versus 1.1±0.5; P=0.001) and an increase in skeletal muscle Pi/phosphocreatine ratio (0.1±0.1 versus 0.2±0.1; P=0.022). This occurred in the context of increases in left ventricular end-systolic and end-diastolic volumes (P=0.009 and P=0.008, respectively), T1 and T2 mapping (P=0.001 and P=0.028, respectively) but with preserved left ventricular ejection fraction, mass and global longitudinal strain, and no change in cardiac biomarkers. There was preservation of the mitochondrial copy number in skeletal muscle biopsies but a significant increase in areas of skeletal muscle degradation (P=0.001) in patients with breast cancer following chemotherapy. Patients with breast cancer demonstrated a reduction in skeletal muscle sarcomere number from the prechemotherapy stage compared with healthy controls (P=0.013). CONCLUSIONS: Contemporary doses of epirubicin for breast cancer treatment result in a significant reduction of cardiac and skeletal muscle high-energy 31P-metabolism alongside structural skeletal muscle changes. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04467411.


Assuntos
Antraciclinas , Antibióticos Antineoplásicos , Neoplasias da Mama , Epirubicina , Feminino , Humanos , Pessoa de Meia-Idade , Trifosfato de Adenosina , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Epirubicina/efeitos adversos , Estudos Longitudinais , Músculo Esquelético/diagnóstico por imagem , Fosfocreatina , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda
2.
Circ Res ; 133(3): 255-270, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37401464

RESUMO

BACKGROUND: Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS: Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS: We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS: Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.


Assuntos
Miócitos Cardíacos , Sarcômeros , Ratos , Camundongos , Animais , Sarcômeros/metabolismo , Conectina/genética , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo
3.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174721

RESUMO

Myofibrillar myopathies (MFM) are a group of chronic muscle diseases pathophysiologically characterized by accumulation of protein aggregates and structural failure of muscle fibers. A subtype of MFM is caused by heterozygous mutations in the filamin C (FLNC) gene, exhibiting progressive muscle weakness, muscle structural alterations and intracellular protein accumulations. Here, we characterize in depth the pathogenicity of two novel truncating FLNc variants (p.Q1662X and p.Y2704X) and assess their distinct effect on FLNc stability and distribution as well as their impact on protein quality system (PQS) pathways. Both variants cause a slowly progressive myopathy with disease onset in adulthood, chronic myopathic alterations in muscle biopsy including the presence of intracellular protein aggregates. Our analyses revealed that p.Q1662X results in FLNc haploinsufficiency and p.Y2704X in a dominant-negative FLNc accumulation. Moreover, both protein-truncating variants cause different PQS alterations: p.Q1662X leads to an increase in expression of several genes involved in the ubiquitin-proteasome system (UPS) and the chaperone-assisted selective autophagy (CASA) system, whereas p.Y2704X results in increased abundance of proteins involved in UPS activation and autophagic buildup. We conclude that truncating FLNC variants might have different pathogenetic consequences and impair PQS function by diverse mechanisms and to varying extents. Further studies on a larger number of patients are necessary to confirm our observations.


Assuntos
Miopatias Congênitas Estruturais , Agregados Proteicos , Humanos , Filaminas/genética , Filaminas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
4.
Cell Rep ; 42(5): 112516, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37204926

RESUMO

Response to multiple microenvironmental cues and resilience to mechanical stress are essential features of trafficking leukocytes. Here, we describe unexpected role of titin (TTN), the largest protein encoded by the human genome, in the regulation of mechanisms of lymphocyte trafficking. Human T and B lymphocytes express five TTN isoforms, exhibiting cell-specific expression, distinct localization to plasma membrane microdomains, and different distribution to cytosolic versus nuclear compartments. In T lymphocytes, the LTTN1 isoform governs the morphogenesis of plasma membrane microvilli independently of ERM protein phosphorylation status, thus allowing selectin-mediated capturing and rolling adhesions. Likewise, LTTN1 controls chemokine-triggered integrin activation. Accordingly, LTTN1 mediates rho and rap small GTPases activation, but not actin polymerization. In contrast, chemotaxis is facilitated by LTTN1 degradation. Finally, LTTN1 controls resilience to passive cell deformation and ensures T lymphocyte survival in the blood stream. LTTN1 is, thus, a critical and versatile housekeeping regulator of T lymphocyte trafficking.


Assuntos
Transdução de Sinais , Linfócitos T , Humanos , Conectina/metabolismo , Adesão Celular/fisiologia , Isoformas de Proteínas/metabolismo , Ativação Linfocitária
6.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047781

RESUMO

BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.


Assuntos
Proteínas Associadas aos Microtúbulos , Atrofia Muscular Espinal , Humanos , Biglicano/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica , Atrofia Muscular Espinal/genética , Mutação , Músculo Esquelético/metabolismo
7.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831217

RESUMO

Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.


Assuntos
COVID-19 , Infecções por Coxsackievirus , Miocardite , Viroses , Camundongos , Animais , Camundongos Transgênicos , Enterovirus Humano B , SARS-CoV-2
8.
J Cachexia Sarcopenia Muscle ; 13(6): 3106-3121, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254806

RESUMO

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Humanos , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
9.
Leukemia ; 36(9): 2196-2207, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35804097

RESUMO

Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion. Here we explored the role of Gfi1b in metabolism reprogramming during hematopoiesis and leukemogenesis. We demonstrated that Gfi1b deletion remarkably activated mitochondrial respiration and altered energy metabolism dependence toward oxidative phosphorylation (OXPHOS). Mitochondrial substrate dependency was shifted from glucose to fatty acids upon Gfi1b deletion via upregulating fatty acid oxidation (FAO). On a molecular level, Gfi1b epigenetically regulated multiple FAO-related genes. Moreover, we observed that metabolic phenotypes evolved as cells progressed from preleukemia to leukemia, and the correlation between Gfi1b expression level and metabolic phenotype was affected by genetic variations in AML cells. FAO or OXPHOS inhibition significantly impeded leukemia progression of Gfi1b-KO MLL/AF9 cells. Finally, we showed that Gfi1b-deficient AML cells were more sensitive to metformin as well as drugs implicated in OXPHOS and FAO inhibition, opening new potential therapeutic strategies.


Assuntos
Hematopoese , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição
10.
Sci Transl Med ; 13(618): eabd3079, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731013

RESUMO

Heterozygous truncating variants in TTN (TTNtv), the gene coding for titin, cause dilated cardiomyopathy (DCM), but the underlying pathomechanisms are unclear and disease management remains uncertain. Truncated titin proteins have not yet been considered as a contributor to disease development. Here, we studied myocardial tissues from nonfailing donor hearts and 113 patients with end-stage DCM for titin expression and identified a TTNtv in 22 patients with DCM (19.5%). We directly demonstrate titin haploinsufficiency in TTNtv-DCM hearts and the absence of compensatory changes in the alternative titin isoform Cronos. Twenty-one TTNtv-DCM hearts in our cohort showed stable expression of truncated titin proteins. Expression was variable, up to half of the total titin protein pool, and negatively correlated with patient age at heart transplantation. Truncated titin proteins were not detected in sarcomeres but were present in intracellular aggregates, with deregulated ubiquitin-dependent protein quality control. We produced human induced pluripotent stem cell­derived cardiomyocytes (hiPSC-CMs), comparing wild-type controls to cells with a patient-derived, prototypical A-band-TTNtv or a CRISPR-Cas9­generated M-band-TTNtv. TTNtv-hiPSC-CMs showed reduced wild-type titin expression and contained truncated titin proteins whose proportion increased upon inhibition of proteasomal activity. In engineered heart muscle generated from hiPSC-CMs, depressed contractility caused by TTNtv could be reversed by correction of the mutation using CRISPR-Cas9, eliminating truncated titin proteins and raising wild-type titin content. Functional improvement also occurred when wild-type titin protein content was increased by proteasome inhibition. Our findings reveal the major pathomechanisms of TTNtv-DCM and can be exploited for new therapies to treat TTNtv-related cardiomyopathies.


Assuntos
Cardiomiopatias , Conectina , Transplante de Coração , Células-Tronco Pluripotentes Induzidas , Cardiomiopatias/genética , Conectina/genética , Conectina/metabolismo , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Doadores de Tecidos
11.
Nat Commun ; 12(1): 3575, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117258

RESUMO

An amino acid exchange (P209L) in the HSPB8 binding site of the human co-chaperone BAG3 gives rise to severe childhood cardiomyopathy. To phenocopy the disease in mice and gain insight into its mechanisms, we generated humanized transgenic mouse models. Expression of human BAG3P209L-eGFP in mice caused Z-disc disintegration and formation of protein aggregates. This was accompanied by massive fibrosis resulting in early-onset restrictive cardiomyopathy with increased mortality as observed in patients. RNA-Seq and proteomics revealed changes in the protein quality control system and increased autophagy in hearts from hBAG3P209L-eGFP mice. The mutation renders hBAG3P209L less soluble in vivo and induces protein aggregation, but does not abrogate hBAG3 binding properties. In conclusion, we report a mouse model mimicking the human disease. Our data suggest that the disease mechanism is due to accumulation of hBAG3P209L and mouse Bag3, causing sequestering of components of the protein quality control system and autophagy machinery leading to sarcomere disruption.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatia Restritiva/genética , Cardiomiopatia Restritiva/metabolismo , Animais , Autofagia , Sítios de Ligação , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Cardiomiopatia Restritiva/terapia , Criança , Modelos Animais de Doenças , Regulação da Expressão Gênica , Terapia Genética , Coração , Proteínas de Choque Térmico , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Proteômica , Sarcômeros/metabolismo
12.
Int J Cardiol ; 329: 167-174, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33373648

RESUMO

BACKGROUND: Desmin is the major intermediate filament (IF) protein in human heart and skeletal muscle. So-called 'desminopathies' are disorders due to pathogenic variants in the DES gene and are associated with skeletal myopathies and/or various types of cardiomyopathies. So far, only a limited number of DES pathogenic variants have been identified and functionally characterized. METHODS AND RESULTS: Using a Sanger- and next generation sequencing (NGS) approach in patients with various types of cardiomyopathies, we identified two novel, non-synonymous missense DES variants: p.(Ile402Thr) and p.(Glu410Lys). Mutation carriers developed dilated (DCM) or arrhythmogenic cardiomyopathy (ACM), and cardiac conduction disease, leading to spare out the exercise-induced polymorphic ventricular tachycardia; we moved this variant to data in brief. To investigate the functional impact of these four DES variants, transfection experiments using SW-13 and H9c2 cells with native and mutant desmin were performed and filament assembly was analyzed by confocal microscopy. The DES_p.(Ile402Thr) and DES_p.(Glu410Lys) cells showed filament assembly defects forming cytoplasmic desmin aggregates. Furthermore, immunohistochemical and ultrastructural analysis of myocardial tissue from mutation carriers with the DES_p.(Glu410Lys) pathogenic variant supported the in vitro results. CONCLUSIONS: Our in vitro results supported the classification of DES_p.(Ile402Thr) and DES_p.(Glu410Lys) as novel pathogenic variants and demonstrated that the cardiac phenotypes associated with DES variants are diverse and cell culture experiments improve in silico analysis and genetic counseling because the pathogenicity of a variant can be clarified.


Assuntos
Bloqueio Atrioventricular , Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Morte Súbita Cardíaca , Desmina/genética , Humanos , Mutação , Linhagem
13.
Elife ; 92020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357376

RESUMO

The giant muscle protein titin is a major contributor to passive force; however, its role in active force generation is unresolved. Here, we use a novel titin-cleavage (TC) mouse model that allows specific and rapid cutting of elastic titin to quantify how titin-based forces define myocyte ultrastructure and mechanics. We show that under mechanical strain, as TC doubles from heterozygous to homozygous TC muscles, Z-disks become increasingly out of register while passive and active forces are reduced. Interactions of elastic titin with sarcomeric actin filaments are revealed. Strikingly, when titin-cleaved muscles contract, myosin-containing A-bands become split and adjacent myosin filaments move in opposite directions while also shedding myosins. This establishes intact titin filaments as critical force-transmission networks, buffering the forces observed by myosin filaments during contraction. To perform this function, elastic titin must change stiffness or extensible length, unveiling its fundamental role as an activation-dependent spring in contracting muscle.


Assuntos
Contração Muscular , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Proteínas Quinases/fisiologia , Animais , Feminino , Masculino , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo , Resistência à Tração
14.
Nat Commun ; 11(1): 4479, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900999

RESUMO

The giant protein titin is thought to be required for sarcomeric integrity in mature myocytes, but direct evidence for this hypothesis is limited. Here, we describe a mouse model in which Z-disc-anchored TTN is depleted in adult skeletal muscles. Inactivation of TTN causes sarcomere disassembly and Z-disc deformations, force impairment, myocyte de-stiffening, upregulation of TTN-binding mechanosensitive proteins and activation of protein quality-control pathways, concomitant with preferential loss of thick-filament proteins. Interestingly, expression of the myosin-bound Cronos-isoform of TTN, generated from an alternative promoter not affected by the targeting strategy, does not prevent deterioration of sarcomere formation and maintenance. Finally, we demonstrate that loss of Z-disc-anchored TTN recapitulates muscle remodeling in critical illness 'myosinopathy' patients, characterized by TTN-depletion and loss of thick filaments. We conclude that full-length TTN is required to integrate Z-disc and A-band proteins into the mature sarcomere, a function that is lost when TTN expression is pathologically lowered.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Proteínas Quinases/fisiologia , Sarcômeros/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Força Muscular/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Miosinas/metabolismo , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Sarcômeros/patologia , Ubiquitinação
15.
Proc Natl Acad Sci U S A ; 117(39): 24545-24556, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929035

RESUMO

The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.


Assuntos
Miocárdio/química , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Animais , Elasticidade , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/química , Oxirredução , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética
16.
Acta Neuropathol Commun ; 8(1): 154, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887649

RESUMO

Filamin C (FLNc) is mainly expressed in striated muscle cells where it localizes to Z-discs, myotendinous junctions and intercalated discs. Recent studies have revealed numerous mutations in the FLNC gene causing familial and sporadic myopathies and cardiomyopathies with marked clinical variability. The most frequent myopathic mutation, p.W2710X, which is associated with myofibrillar myopathy, deletes the carboxy-terminal 16 amino acids from FLNc and abolishes the dimerization property of Ig-like domain 24. We previously characterized "knock-in" mice heterozygous for this mutation (p.W2711X), and have now investigated homozygous mice using protein and mRNA expression analyses, mass spectrometry, and extensive immunolocalization and ultrastructural studies. Although the latter mice display a relatively mild myopathy under normal conditions, our analyses identified major mechanisms causing the pathophysiology of this disease: in comparison to wildtype animals (i) the expression level of FLNc protein is drastically reduced; (ii) mutant FLNc is relocalized from Z-discs to particularly mechanically strained parts of muscle cells, i.e. myotendinous junctions and myofibrillar lesions; (iii) the number of lesions is greatly increased and these lesions lack Bcl2-associated athanogene 3 (BAG3) protein; (iv) the expression of heat shock protein beta-7 (HSPB7) is almost completely abolished. These findings indicate grave disturbances of BAG3-dependent and -independent autophagy pathways that are required for efficient lesion repair. In addition, our studies reveal general mechanisms of lesion formation and demonstrate that defective FLNc dimerization via its carboxy-terminal domain does not disturb assembly and basic function of myofibrils. An alternative, more amino-terminally located dimerization site might compensate for that loss. Since filamins function as stress sensors, our data further substantiate that FLNc is important for mechanosensing in the context of Z-disc stabilization and maintenance.


Assuntos
Filaminas/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Sarcômeros/patologia , Animais , Técnicas de Introdução de Genes , Homozigoto , Camundongos , Mutação , Miopatias Congênitas Estruturais/metabolismo , Sarcômeros/metabolismo
17.
Nat Commun ; 11(1): 2060, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345978

RESUMO

Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.


Assuntos
Conectina/metabolismo , Endopeptidases/genética , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos , Conectina/química , Feminino , Proteínas Imobilizadas/metabolismo , Magnetismo , Camundongos , Músculos/metabolismo , Músculos/ultraestrutura , Pinças Ópticas , Fenótipo , Dobramento de Proteína , Análise Espectral
18.
Front Physiol ; 11: 89, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116794

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an acidic and fibrotic stroma. The extracellular matrix (ECM) causing the fibrosis is primarily formed by pancreatic stellate cells (PSCs). The effects of the altered biomechanics and pH landscape in the pathogenesis of PDAC, however, are poorly understood. Mechanotransduction in cells has been linked to the function of mechanosensitive ion channels such as Piezo1. Here, we tested whether this channel plays crucial roles in transducing mechanical signals in the acidic PDAC microenvironment. We performed immunofluorescence, Ca2+ influx and intracellular pH measurements in PSCs and complemented them by live-cell imaging migration experiments in order to assess the function of Piezo1 channels in PSCs. We evaluated whether Piezo1 responds to changes of extracellular and/or intracellular pH in the pathophysiological range (pH 6.6 and pH 6.9, respectively). We validated our results using Piezo1-transfected HEK293 cells as a model system. Indeed, acidification of the intracellular space severely inhibits Piezo1-mediated Ca2+ influx into PSCs. In addition, stimulation of Piezo1 channels with its activator Yoda1 accelerates migration of PSCs on a two-dimensional ECM as well as in a 3D setting. Furthermore, Yoda1-activated PSCs transmit more force to the surrounding ECM under physiological pH, as revealed by measuring the dislocation of microbeads embedded in the surrounding matrix. This is paralleled by an enhanced phosphorylation of myosin light chain isoform 9 after Piezo1 stimulation. Intriguingly, upon acidification, Piezo1 activation leads to the initiation of cell death and disruption of PSC spheroids. In summary, stimulating Piezo1 activates PSCs by inducing Ca2+ influx which in turn alters the cytoskeletal architecture. This results in increased cellular motility and ECM traction, which can be useful for the cells to invade the surroundings and to detach from the tissue. However, in the presence of an acidic extracellular pH, although net Ca2+ influx is reduced, Piezo1 activation leads to severe cell stress also limiting cellular viability. In conclusion, our results indicate a strong interdependence between environmental pH, the mechanical output of PSCs and stromal mechanics, which promotes early local invasion of PDAC cells.

19.
Circ Genom Precis Med ; 12(8): e002491, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430208

RESUMO

BACKGROUND: Familial atrial septal defect (ASD) has previously been attributed primarily to mutations in cardiac transcription factors. Here, we report a large, multi-generational family (78 members) with ASD combined with a late-onset dilated cardiomyopathy and further characterize the consequences of mutant α-actin. METHODS: We combined a genome-wide linkage analysis with cell biology, microscopy, and molecular biology tools to characterize a novel ACTC1 (cardiac α-actin) mutation identified in association with ASD and late-onset dilated cardiomyopathy in a large, multi-generational family. RESULTS: Using a genome-wide linkage analysis, the ASD disease locus was mapped to chromosome 15q14 harboring the ACTC1 gene. In 15 affected family members, a heterozygous, nonsynonymous, and fully penetrant mutation (p. Gly247Asp) was identified in exon 5 of ACTC1 that was absent in all healthy family members (n=63). In silico tools predicted deleterious consequences of this variant that was found absent in control databases. Ultrastructural analysis of myocardial tissue of one of the mutation carriers showed sarcomeric disarray, myofibrillar degeneration, and increased apoptosis, while cardiac proteomics revealed a significant increase in extracellular matrix proteins. Consistently, structural defects and increased apoptosis were also observed in neonatal rat ventricular cardiomyocytes overexpressing the mutant, but not native human ACTC1. Molecular dynamics studies and additional mechanistic analyses in cardiomyocytes confirmed actin polymerization/turnover defects, thereby affecting contractility. CONCLUSIONS: A combined phenotype of ASD and late-onset heart failure was caused by a heterozygous, nonsynonymous ACTC1 mutation. Mechanistically, we found a shared molecular mechanism of defective actin signaling and polymerization in both cardiac development and contractile function. Detection of ACTC1 mutations in patients with ASD may thus have further clinical implications with regard to monitoring for (late-onset) dilated cardiomyopathy.


Assuntos
Actinas/genética , Cardiomiopatia Dilatada/genética , Comunicação Interatrial/genética , Actinas/química , Actinas/metabolismo , Idade de Início , Animais , Apoptose , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Feminino , Comunicação Interatrial/metabolismo , Comunicação Interatrial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Linhagem , Ratos
20.
J Biol Chem ; 294(18): 7202-7218, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737279

RESUMO

Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aß, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aß than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.


Assuntos
Miocárdio/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Animais , Deleção de Genes , Genes Letais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA