Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biointerphases ; 17(3): 031002, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35513339

RESUMO

Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers.


Assuntos
Iodo , Povidona-Iodo , Argônio/química , Biofilmes , Iodetos , Espectroscopia Fotoeletrônica , Povidona , Sefarose
2.
Front Chem ; 9: 666161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026730

RESUMO

Bacteria generally interact with the environment via processes involving their cell-envelope. Thus, techniques that may shed light on their surface chemistry are attractive tools for providing an understanding of bacterial interactions. One of these tools is Al Kα-excited photoelectron spectroscopy (XPS) with its estimated information depth of <10 nm. XPS-analyses of bacteria have been performed for several decades on freeze-dried specimens in order to be compatible with the vacuum in the analysis chamber of the spectrometer. A limitation of these studies has been that the freeze-drying method may collapse cell structure as well as introduce surface contaminants. However, recent developments in XPS allow for analysis of biological samples at near ambient pressure (NAP-XPS) or as frozen hydrated specimens (cryo-XPS) in vacuum. In this work, we have analyzed bacterial samples from a reference strain of the Gram-negative bacterium Pseudomonas fluorescens using both techniques. We compare the results obtained and, in general, observe good agreement between the two techniques. Furthermore, we discuss advantages and disadvantages with the two analysis approaches and the output data they provide. XPS reference data from the bacterial strain are provided, and we propose that planktonic cells of this strain (DSM 50090) are used as a reference material for surface chemical analysis of bacterial systems.

3.
NanoImpact ; 23: 100337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559838

RESUMO

The coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe innovation in nanotechnologies. The proposed entity, referred to as "the Centre", will establish a 'one-stop shop' for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability.


Assuntos
Nanoestruturas , Nanotecnologia , Indústrias , Medição de Risco
4.
Sci Rep ; 10(1): 20712, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244030

RESUMO

Controlling thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties.

5.
Nanoscale ; 12(26): 14222-14229, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32608434

RESUMO

Low biodegradability of graphene derivatives and related health risks are the main limiting factors for their in vivo biomedical applications. Here, we present the synthesis of enzyme-functionalized graphene sheets with self-degrading properties under physiological conditions and their applications in tumor therapy. The synergistic enzyme cascade glucose oxidase and myeloperoxidase are covalently conjugated to the surface of graphene sheets and two-dimensional (2D) platforms are obtained that can produce sodium hypochlorite from glucose. The enzyme-functionalized graphene sheets with up to 289 nm average size are degraded into small pieces (≤40 nm) by incubation under physiological conditions for 24 h. Biodegradable graphene sheets are further loaded with doxorubicin and their ability for tumor therapy is evaluated in vitro and in vivo. The laser-triggered release of doxorubicin in combination with the enzymatic activity of the functionalized graphene sheets results in a synergistic antitumor activity. Taking advantage of their neutrophil-like activity, fast biodegradability, high photo- and chemotherapeutic effects, the novel two-dimensional nanoplatforms can be used for tumor therapeutic applications.


Assuntos
Grafite , Corantes , Doxorrubicina/farmacologia
6.
J Am Chem Soc ; 142(30): 12976-12986, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32597176

RESUMO

Covalent triazine frameworks are an emerging material class that have shown promising performance for a range of applications. In this work, we report on a metal-assisted and solvent-mediated reaction between calcium carbide and cyanuric chloride, as cheap and commercially available precursors, to synthesize two-dimensional triazine structures (2DTSs). The reaction between the solvent, dimethylformamide, and cyanuric chloride was promoted by calcium carbide and resulted in dimethylamino-s-triazine intermediates, which in turn undergo nucleophilic substitutions. This reaction was directed into two dimensions by calcium ions derived from calcium carbide and induced the formation of 2DTSs. The role of calcium ions to direct the two-dimensionality of the final structure was simulated using DFT and further proven by synthesizing molecular intermediates. The water content of the reaction medium was found to be a crucial factor that affected the structure of the products dramatically. While 2DTSs were obtained under anhydrous conditions, a mixture of graphitic material/2DTSs or only graphitic material (GM) was obtained in aqueous solutions. Due to the straightforward and gram-scale synthesis of 2DTSs, as well as their photothermal and photodynamic properties, they are promising materials for a wide range of future applications, including bacteria and virus incapacitation.

7.
Langmuir ; 36(24): 6706-6715, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32441938

RESUMO

While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected.


Assuntos
Ácidos Borônicos , Molibdênio , Antibacterianos
8.
Comput Struct Biotechnol J ; 18: 583-602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226594

RESUMO

Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.

9.
Nanoscale ; 11(34): 15804-15809, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31433428

RESUMO

As resistance to traditional drugs emerges for treatment of virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3-C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications.

10.
Small ; 15(12): e1805430, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773846

RESUMO

A new method for top-down, one-pot, gram-scale production of high quality nanographene by incubating graphite in a dilute sodium hypochlorite solution at only 40 °C is reported here. The produced sheets have only 4 at% oxygen content, comparable with nanographene grown by chemical vapor deposition. The nanographene sheets are covalently functionalized using a nondestructive nitrene [2+1] cycloaddition reaction that preserves their π-conjugated system. Statistical analyses of Raman spectroscopy and X-ray photoelectron spectroscopy indicate a low number of sp3 carbon atoms on the order of 2% before and 4% after covalent functionalization. The nanographene sheets are significantly more conductive than conventionally prepared nanographene oxide, and conductivity further increases after covalent functionalization. The observed doping effects and theoretical studies suggest sp2 hybridization for the carbon atoms involved in the [2+1] cycloaddition reaction leading to preservation of the π-conjugated system and enhancing conductivity via n-type doping through the bridging N-atom. These methods are easily scalable, which opens the door to a mild and efficient process to produce high quality nanographenes and covalently functionalize them while retaining or improving their physicochemical properties.

11.
ACS Appl Bio Mater ; 2(12): 5749-5759, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021568

RESUMO

Biofouling constitutes a major challenge in the application of biosensors and biomedical implants, as well as for (food) packaging and marine equipment. In this work, an antifouling surface coating based on the combination of mussel-inspired dendritic polyglycerol (MI-dPG) and an amine-functionalized block copolymer of linear polyglycerol (lPG-b-OA11, OA = oligo-amine) was developed. The coating was compared to a MI-dPG surface which was postfunctionalized with commercially available amine-terminated polyethylene glycol (HO-PEG-NH2) of similar molecular weight. In the current work, these coatings were compared in their chemical stability, protein fouling characteristics, and cell fouling characteristics. The lPG-b-OA11-functionalized coating showed high chemical stability in both phosphate buffered saline (PBS) and sodium dodecyl sulfate (SDS) solutions and reduced the adhesion of fibrinogen from human plasma with 99% and the adhesion of human serum albumin with 96%, in comparison to the bare titanium dioxide substrate. Furthermore, the proliferation of human umbilical vein endothelial cells (HUVECs) was reduced with 85% when the lPG-b-OA11 system was compared to bare titanium dioxide. Additionally, a reduction of 94% was observed when the lPG-b-OA11 system was compared to tissue culture polystyrene.

12.
Nanoscale ; 10(20): 9525-9537, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29744504

RESUMO

Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene-pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene's structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed "trapping" and "nano-knives" mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of "trapping" and "nano-knives" mechanisms for the antibacterial activity of graphene sheets.


Assuntos
Antibacterianos/química , Bacillus cereus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Grafite/química , Nanoestruturas/química , Polímeros
13.
Small ; 14(17): e1800189, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575636

RESUMO

Understanding the mechanism of interactions of nanomaterials at biointerfaces is a crucial issue to develop new antimicrobial vectors. In this work, a series of water-soluble fullerene-polyglycerol sulfates (FPS) with different fullerene/polymer weight ratios and varying numbers of polyglycerol sulfate branches are synthesized, characterized, and their interactions with two distinct surfaces displaying proteins involved in target cell recognition are investigated. The combination of polyanionic branches with a solvent exposed variable hydrophobic core in FPS proves to be superior to analogs possessing only one of these features in preventing interaction of vesicular stomatitis virus coat glycoprotein (VSV-G) with baby hamster kidney cells serving as a model of host cell. Interference with L-selectin-ligand binding is dominated by the negative charge, which is studied by two assays: a competitive surface plasmon resonance (SPR)-based inhibition assay and the leukocyte cell (NALM-6) rolling on ligands under flow conditions. Due to possible intrinsic hydrophobic and electrostatic effects of synthesized compounds, pico- to nanomolar half maximal inhibitory concentrations (IC50 ) are achieved. With their highly antiviral and anti-inflammatory properties, together with good biocompatibility, FPS are promising candidates for the future development towards biomedical applications.


Assuntos
Fulerenos/química , Glicerol/química , Polímeros/química , Animais , Linhagem Celular , Cricetinae , Leucócitos , Ressonância de Plasmônio de Superfície , Proteínas Virais/química
14.
J Mater Chem B ; 6(10): 1489-1500, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254213

RESUMO

Thermoresponsive polymer coatings can facilitate cell sheet fabrication under mild conditions by promoting cell adhesion and proliferation at 37 °C. At lower temperatures the detachment of confluent cell sheets is triggered without enzymatic treatment. Thus, confluent cell sheets with intact extracellular matrix for regenerative medicine or tissue engineering applications become available. Herein, we applied the previously identified structural design parameters of functional, thermoresponsive poly(glycidyl ether) brushes on gold to the more application-relevant substrate glass via the self-assembly of a corresponding block copolymer (PGE-AA) with a short surface-reactive, amine-presenting anchor block. Both, physical and covalent immobilization on glass via either multivalent ionic interactions of the anchor block with bare glass or the coupling of the anchor block to a polydopamine (PDA) adhesion layer on glass resulted in stable coatings. Atomic force microscopy revealed a high degree of roughness of covalently attached coatings on the PDA adhesion layer, while physically attached coatings on bare glass were smooth and in the brush-like regime. Cell sheets of primary human dermal fibroblasts detached reliably (86%) and within 20 ± 10 min from physically tethered PGE-AA coatings on glass when prepared under cloud point grafting conditions. The presence of the laterally inhomogeneous PDA adhesion layer, however, hindered the spontaneous temperature-triggered cell detachment from covalently grafted PGE-AA, decreasing both detachment rate and reliability. Despite being only physically attached, self-assembled monolayer brushes of PGE-AA block copolymers on glass are functional and stable thermoresponsive coatings for application in cell sheet fabrication of human fibroblasts as determined by X-ray photoelectron spectroscopy.

15.
J Phys Condens Matter ; 29(47): 474002, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28891804

RESUMO

Two systems of suspended nanoparticles have been studied with near-ambient pressure x-ray photoelectron spectroscopy: silver nanoparticles in water and strontium fluoride-calcium fluoride core-shell nanoparticles in ethylene glycol. The corresponding dry samples were measured under ultra high vacuum for comparison. The results obtained under near-ambient pressure were overall comparable to those obtained under ultra high vacuum, although measuring silver nanoparticles in water requires a high pass energy and a long acquisition time. A shift towards higher binding energies was found for the silver nanoparticles in aqueous suspension compared to the corresponding dry sample, which can be assigned to a change of surface potential at the water-nanoparticle interface. The shell-thickness of the core-shell nanoparticles was estimated based on simulated spectra from the National Institute of Standards and Technology database for simulation of electron spectra for surface analysis. With the instrumental set-up presented in this paper, nanoparticle suspensions in a suitable container can be directly inserted into the analysis chamber and measured without prior sample preparation.

16.
Langmuir ; 33(23): 5657-5665, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28502183

RESUMO

Micropatterns and nanopatterns of gold embedded in silver and titanium embedded in gold have been prepared by combining either photolithography or electron-beam lithography with a glue-free template-stripping procedure. The obtained patterned surfaces have been topographically characterized using atomic force microscopy and scanning electron microscopy, showing a very low root-mean-square roughness (<0.5 nm), high coplanarity between the two metals (maximum height difference ≈ 2 nm), and topographical continuity at the bimetallic interface. Spectroscopic characterization using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF-SIMS), and Auger electron spectroscopy (AES) has shown a sharp chemical contrast between the two metals at the interface for titanium patterns embedded in gold, whereas diffusion of silver into gold was observed for gold patterns embedded in silver. Surface flatness combined with a high chemical contrast makes the obtained surfaces suitable for applications involving functionalization with molecules by orthogonal adsorption chemistries or for instrumental calibration. The latter possibility has been tested by determining the image sharpness and the analyzed area on circular patterns of different sizes for each of the spectroscopic techniques applied for characterization.This is the first study in which the analyzed area has been determined using XPS and AES on a flat surface, and the first example of a method for determining the analyzed area using ToF-SIMS.

17.
Macromol Biosci ; 17(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28418231

RESUMO

The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air-liquid interface. The amphiphile forms stable monomolecular films at the air-liquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects.


Assuntos
Antracenos/química , Materiais Biomiméticos/química , Fosfatos de Cálcio/química , Durapatita/química , Tensoativos/química
18.
Angew Chem Int Ed Engl ; 56(10): 2675-2679, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165179

RESUMO

A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures.

19.
J Vis Exp ; (130)2017 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-29364209

RESUMO

The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology.


Assuntos
Nanoestruturas/química , Água/química
20.
Chem Commun (Camb) ; 52(100): 14458-14461, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27901533

RESUMO

A novel photoswitchable rotaxane was synthesised and its switching behaviour in solution was analysed with NMR and UV-Vis. A monolayer of rotaxanes was deposited on glass surfaces and the on-surface photoswitching was investigated. Angle-resolved NEXAFS spectra revealed a preferential orientation that reversibly changes upon switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA