Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
medRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39006424

RESUMO

Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology. IRIS leverages light interference from an optically transparent thin film, eliminating the need for complex optical resonances to enhance the signal by harnessing light interference and the power of signal averaging in shot-noise-limited operation to achieve virtually unlimited sensitivity. In our latest work, we have further improved our previous 'Single-Particle' IRIS (SP-IRIS) technology by allowing the construction of the optical signature of target nanoparticles (whole virus) from a single image. This new platform, 'Pixel-Diversity' IRIS (PD-IRIS), eliminated the need for z-scan acquisition, required in SP-IRIS, a time-consuming and expensive process, and made our technology more applicable to POC settings. Using PD-IRIS, we quantitatively detected the Monkeypox virus (MPXV), the etiological agent for Monkeypox (Mpox) infection. MPXV was captured by anti-A29 monoclonal antibody (mAb 69-126-3) on Protein G spots on the sensor chips and were detected at a limit-of-detection (LOD) - of 200 PFU/ml (~3.3 attomolar). PD-IRIS was superior to the laboratory-based ELISA (LOD - 1800 PFU/mL) used as a comparator. The specificity of PD-IRIS in MPXV detection was demonstrated using Herpes simplex virus, type 1 (HSV-1), and Cowpox virus (CPXV). This work establishes the effectiveness of PD-IRIS and opens possibilities for its advancement in clinical diagnostics of Mpox at POC. Moreover, PD-IRIS is a modular technology that can be adapted for the multiplex detection of pathogens for which high-affinity ligands are available that can bind their surface antigens to capture them on the sensor surface.

2.
Sci Rep ; 14(1): 16996, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043802

RESUMO

Photoacoustic Microscopy (PAM) integrates optical and acoustic imaging, offering enhanced penetration depth for detecting optical-absorbing components in tissues. Nonetheless, challenges arise in scanning large areas with high spatial resolution. With speed limitations imposed by laser pulse repetition rates, the potential role of computational methods is highlighted in accelerating PAM imaging. We propose a novel and highly adaptable algorithm named DiffPam that utilizes diffusion models to speed up the photoacoustic imaging process. We leveraged a diffusion model trained exclusively on natural images, comparing its performance with an in-domain trained U-Net model using a dataset focused on PAM images of mice brain microvasculature. Our findings indicate that DiffPam performs similarly to a dedicated U-Net model without needing a large dataset. We demonstrate that scanning can be accelerated fivefold with limited information loss. We achieved a 24.70 % increase in peak signal-to-noise ratio and a 27.54 % increase in structural similarity index compared to the baseline bilinear interpolation method. The study also introduces the efficacy of shortened diffusion processes for reducing computing time without compromising accuracy. DiffPam stands out from existing methods as it does not require supervised training or detailed parameter optimization typically needed for other unsupervised methods. This study underscores the significance of DiffPam as a practical algorithm for reconstructing undersampled PAM images, particularly for researchers with limited artificial intelligence expertise and computational resources.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Microscopia/métodos , Difusão
3.
Sci Rep ; 14(1): 5849, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462645

RESUMO

This study aimed to enhance the accuracy of Gleason grade group (GG) upgrade prediction in prostate cancer (PCa) patients who underwent MRI-guided in-bore biopsy (MRGB) and radical prostatectomy (RP) through a combined analysis of prebiopsy and MRGB clinical data. A retrospective analysis of 95 patients with prostate cancer diagnosed by MRGB was conducted where all patients had undergone RP. Among the patients, 64.2% had consistent GG results between in-bore biopsies and RP, whereas 28.4% had upgraded and 7.4% had downgraded results. GG1 biopsy results, lower biopsy core count, and fewer positive cores were correlated with upgrades in the entire patient group. In patients with GG > 1 , larger tumor sizes and fewer biopsy cores were associated with upgrades. By integrating MRGB data with prebiopsy clinical data, machine learning (ML) models achieved 85.6% accuracy in predicting upgrades, surpassing the 64.2% baseline from MRGB alone. ML analysis also highlighted the value of the minimum apparent diffusion coefficient ( ADC min ) for GG > 1 patients. Incorporation of MRGB results with tumor size, ADC min value, number of biopsy cores, positive core count, and Gleason grade can be useful to predict GG upgrade at final pathology and guide patient selection for active surveillance.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Próstata/cirurgia , Próstata/patologia , Biópsia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Prostatectomia , Biópsia Guiada por Imagem/métodos , Gradação de Tumores
4.
Neurosci Lett ; 825: 137689, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38401641

RESUMO

PURPOSE: The ischemia-reperfusion (I/R) injury seen in the heart can cause severe damage to essential organs such as the brain. Cannabidiol (CBD) obtained from Cannabis sativa is used today to treat various diseases. This study aimed to demonstrate CBD's neuroprotective and therapeutic properties in rats with brain damage caused by I/R in the heart. MATERIALS: Rats were divided into four groups; sham, I/R, I/R + Prophylactic CBD, and I/R + Therapeutic CBD. End of the experiment, brain tissues were collected for biochemical, histopathological, and genetic examinations. RESULTS: I/R damage increased the number of degenerative neurons, caspase-3 and TNF-α immunoexpression, total oxidant status levels, and oxidative stress index. Both prophylactic and therapeutic CBD administration reduced these increased values. In addition, the relative fold changes of AMPK, PGC-1α, SIRT1, and Bcl 2 decreased in the I/R group, and the relative fold change of Bax increased, which are indicators of ER stress and apoptosis. Both administrations of CBD reversed these genes' relative fold changes. CONCLUSION: CBD can be protective against brain injury caused by cardiac I/R damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.


Assuntos
Síndrome Coronariana Aguda , Canabidiol , Traumatismo por Reperfusão , Ratos , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Síndrome Coronariana Aguda/tratamento farmacológico , Estresse Oxidativo , Antioxidantes/farmacologia , Traumatismo por Reperfusão/patologia
5.
Opt Express ; 31(25): 41202-41218, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087525

RESUMO

Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Conventional OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bond-selective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 µm PMMA beads embedded in agarose gel. Next, we show 3D hyperspectral imaging of up to 75 µm of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FF-OCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on imaging a highly scattering myelinated axons region in a mouse brain tissue slice.


Assuntos
Caenorhabditis elegans , Tomografia de Coerência Óptica , Animais , Camundongos , Tomografia de Coerência Óptica/métodos , Imageamento Tridimensional
6.
Acta Endocrinol (Buchar) ; 19(2): 208-214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908877

RESUMO

Context: Primary hyperparathyroidism is one of the most common endocrinological disorder and surgery of parathyroid glands is the main therapy of this disease. Minimally invasive surgery is getting more prominent in these days and its success in parathyroid surgery mostly depends on accuracy of the localization studies. Objective: The aim of this study is to understand the relationship between preoperative biochemical tests, intraoperative findings and Technetium-99m-methoxyisobutylisonitrile (MIBI) scan results. Design: Retrospective clinical study. Subjects and Methods: A total of 185 patients, who have been diagnosed with primary hyperparathyroidism (PHPT) and operated between January, 2010 and October, 2018, were included to the study. Patients with less than 6 months of follow up are excluded from the study. Results: Patients were divided into two groups according to their scintigraphy results; with positive scintigraphy findings as group 1 (n:135) and negative scintigraphy findings as group 2 (n:50). Mean preoperative serum parathyroid hormone (PTH) values were significantly different between the two groups (p<0.02). Mean preoperative serum calcium, creatinine, magnesium, phosphorus, alkaline phosphatase, 25-OH Vitamin D3 levels of both groups were analyzed and there were no statistical differences between the two groups considering these parameters. Also, mean diameter and mean volume of parathyroid adenomas were significantly higher in group 1 (2.1±1.0 cm vs. 1.55±0.72 cm, respectively, p<0.0001; 2.66±5.35 cm3 vs. 1±1.9 cm3, respectively, p<0.0001). Optimal cut-off values of parathyroid adenoma diameter for MIBI scan positivity were 1.55 cm, parathyroid volume for MIBI scan positivity were 0.48 cm3, preoperative serum PTH for MIBI scan positivity were 124.5 ng/L. Conclusions: Preoperative serum PTH levels, diameter and volume of adenomas might be helpful for the prediction of MIBI scan accuracy and possible need of another localization studies.

7.
PLoS One ; 18(10): e0286988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851606

RESUMO

Illumination uniformity is a critical parameter for excitation and data extraction quality in widefield biological imaging applications. However, typical imaging systems suffer from spatial and spectral non-uniformity due to non-ideal optical elements, thus require complex solutions for illumination corrections. We present Effective Uniform Color-Light Integration Device (EUCLID), a simple and cost-effective illumination source for uniformity corrections. EUCLID employs a diffuse-reflective, adjustable hollow cavity that allows for uniform mixing of light from discrete light sources and modifies the source field distribution to compensate for spatial non-uniformity introduced by optical components in the imaging system. In this study, we characterize the light coupling efficiency of the proposed design and compare the uniformity performance with the conventional method. EUCLID demonstrates a remarkable illumination improvement for multi-spectral imaging in both Nelsonian and Koehler alignment with a maximum spatial deviation of ≈ 1% across a wide field-of-view.


Assuntos
Microscopia , Dispositivos Ópticos , Iluminação
8.
Nat Commun ; 14(1): 6655, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863905

RESUMO

Clinical identification and fundamental study of viruses rely on the detection of viral proteins or viral nucleic acids. Yet, amplification-based and antigen-based methods are not able to provide precise compositional information of individual virions due to small particle size and low-abundance chemical contents (e.g., ~ 5000 proteins in a vesicular stomatitis virus). Here, we report a widefield interferometric defocus-enhanced mid-infrared photothermal (WIDE-MIP) microscope for high-throughput fingerprinting of single viruses. With the identification of feature absorption peaks, WIDE-MIP reveals the contents of viral proteins and nucleic acids in single DNA vaccinia viruses and RNA vesicular stomatitis viruses. Different nucleic acid signatures of thymine and uracil residue vibrations are obtained to differentiate DNA and RNA viruses. WIDE-MIP imaging further reveals an enriched ß sheet components in DNA varicella-zoster virus proteins. Together, these advances open a new avenue for compositional analysis of viral vectors and elucidating protein function in an assembled virion.


Assuntos
Ácidos Nucleicos , Estomatite Vesicular , Animais , Microscopia , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Proteínas Virais/genética , DNA
9.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299745

RESUMO

Viral infections can pose a major threat to public health by causing serious illness, leading to pandemics, and burdening healthcare systems. The global spread of such infections causes disruptions to every aspect of life including business, education, and social life. Fast and accurate diagnosis of viral infections has significant implications for saving lives, preventing the spread of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-based techniques are commonly used to detect viruses in the clinic. However, PCR has several drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick diagnosis and efficient control of the virus's spread. Optical devices, in particular, are of great interest due to their advantages such as high sensitivity and direct readout. The current review discusses solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators, and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus , Humanos , COVID-19/diagnóstico , Pandemias , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos
10.
Micromachines (Basel) ; 14(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36837980

RESUMO

Pathogenic microorganisms and viruses can easily transfer from one host to another and cause disease in humans. The determination of these pathogens in a time- and cost-effective way is an extreme challenge for researchers. Rapid and label-free detection of pathogenic microorganisms and viruses is critical in ensuring rapid and appropriate treatment. Sensor technologies have shown considerable advancements in viral diagnostics, demonstrating their great potential for being fast and sensitive detection platforms. In this review, we present a summary of the use of an interferometric reflectance imaging sensor (IRIS) for the detection of microorganisms. We highlight low magnification modality of IRIS as an ensemble biomolecular mass measurement technique and high magnification modality for the digital detection of individual nanoparticles and viruses. We discuss the two different modalities of IRIS and their applications in the sensitive detection of microorganisms and viruses.

11.
ArXiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36776824

RESUMO

Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Current OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bondselective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 {\mu}m PMMA beads embedded in agarose gel. Next, we then show 3D hyperspectral imaging of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FFOCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on a bulky and highly scattering 150 {\mu}m thick mouse brain slice.

12.
Sci Rep ; 13(1): 306, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609657

RESUMO

Monoclonal antibodies (mAbs) play an important role in diagnostics and therapy of infectious diseases. Here we utilize a single-particle interferometric reflectance imaging sensor (SP-IRIS) for screening 30 mAbs against Ebola, Sudan, and Lassa viruses (EBOV, SUDV, and LASV) to find out the ideal capture antibodies for whole virus detection using recombinant vesicular stomatitis virus (rVSV) models expressing surface glycoproteins (GPs) of EBOV, SUDV, and LASV. We also make use of the binding properties on SP-IRIS to develop a model for mapping the antibody epitopes on the GP structure. mAbs that bind to mucin-like domain or glycan cap of the EBOV surface GP show the highest signal on SP-IRIS, followed by mAbs that target the GP1-GP2 interface at the base domain. These antibodies were shown to be highly efficacious against EBOV infection in non-human primates in previous studies. For LASV detection, 8.9F antibody showed the best performance on SP-IRIS. This antibody binds to a unique region on the surface GP compared to other 15 mAbs tested. In addition, we demonstrate a novel antibody competition assay using SP-IRIS and rVSV-EBOV models to reveal the competition between mAbs in three successful therapeutic mAb cocktails against EBOV infection. We provide an explanation as to why ZMapp cocktail has higher efficacy compared to the other two cocktails by showing that three mAbs in this cocktail (13C6, 2G4, 4G7) do not compete with each other for binding to EBOV GP. In fact, the binding of 13C6 enhances the binding of 2G4 and 4G7 antibodies. Our results establish SP-IRIS as a versatile tool that can provide high-throughput screening of mAbs, multiplexed and sensitive detection of viruses, and evaluation of therapeutic antibody cocktails.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Antivirais , Fatores Imunológicos/metabolismo , Epitopos , Anticorpos Neutralizantes
13.
Acta Orthop Belg ; 89(4): 603-608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205748

RESUMO

This study aimed to describe a surgical procedure for the management of corticosteroid-induced osteonecrosis of the femoral head (ONFH) and report its clinical results. The technique included harvesting a bone plug from the lateral femoral neck, core decompression, and bone marrow aspirate concentrate (BMAC) application; the procedure was completed by press-fit insertion of the autologous bone plug in the debrided area. Autologous bone plug-sliding with core decompression and bone marrow concentrate aspirate application provides good clinical outcomes in the management of ONFH. A retrospective review was performed using records of patients operated on between October 2019 and June 2021. Only patients with Ficat-Arlet stage-2 ONFH, who underwent the procedure described, were included. Twenty- nine hips (18 patients) were included and evaluated clinically and radiologically. Clinical evaluation included the Harris hip score (HHS) and Visual analogue scale (VAS) for pain, while radiological evaluation included direct radiographs. The average age was 39.8 years (± 11.7, range: 24-65 years). The average follow-up was 13.5 months (± 3.4, range: 8-19 months). There were improvements in the VAS pain and Harris hip scores in all patients. Average HHS increased from 61.90 to 87.45 (p < 0.001), while the average VAS pain score decreased from 7.14 to 3.27 (p < 0.001). No complications were encountered in any of the patients during the follow-up. None of the patients had femoral head collapse on the latest radiograph or required total hip replacement. The combination of the novel autologous bone plug-sliding method with conventional regenerative methods is a successful treatment choice for ONFH.


Assuntos
Medula Óssea , Osteonecrose , Humanos , Adulto , Cabeça do Fêmur/cirurgia , Corticosteroides , Dor , Descompressão
14.
Sci Rep ; 12(1): 16220, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171215

RESUMO

MicroRNAs (miRNAs) are a family of noncoding, functional RNAs. With recent developments in molecular biology, miRNA detection has attracted significant interest, as hundreds of miRNAs and their expression levels have shown to be linked to various diseases such as infections, cardiovascular disorders and cancers. A powerful and high throughput tool for nucleic acid detection is the DNA microarray technology. However, conventional methods do not meet the demands in sensitivity and specificity, presenting significant challenges for the adaptation of miRNA detection for diagnostic applications. In this study, we developed a highly sensitive and multiplexed digital microarray using plasmonic gold nanorods as labels. For proof of concept studies, we conducted experiments with two miRNAs, miRNA-451a (miR-451) and miRNA-223-3p (miR-223). We demonstrated improvements in sensitivity in comparison to traditional end-point assays that employ capture on solid phase support, by implementing real-time tracking of the target molecules on the sensor surface. Particle tracking overcomes the sensitivity limitations for detection of low-abundance biomarkers in the presence of low-affinity but high-abundance background molecules, where endpoint assays fall short. The absolute lowest measured concentration was 100 aM. The measured detection limit being well above the blank samples, we performed theoretical calculations for an extrapolated limit of detection (LOD). The dynamic tracking improved the extrapolated LODs from femtomolar range to [Formula: see text] 10 attomolar (less than 1300 copies in 0.2 ml of sample) for both miRNAs and the total incubation time was decreased from 5 h to 35 min.


Assuntos
MicroRNAs , Neoplasias , Ouro , Humanos , MicroRNAs/genética
15.
Polymers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054650

RESUMO

The field of biosensing is in constant evolution, propelled by the need for sensitive, reliable platforms that provide consistent results, especially in the drug development industry, where small molecule characterization is of uttermost relevance. Kinetic characterization of small biochemicals is particularly challenging, and has required sensor developers to find solutions to compensate for the lack of sensitivity of their instruments. In this regard, surface chemistry plays a crucial role. The ligands need to be efficiently immobilized on the sensor surface, and probe distribution, maintenance of their native structure and efficient diffusion of the analyte to the surface need to be optimized. In order to enhance the signal generated by low molecular weight targets, surface plasmon resonance sensors utilize a high density of probes on the surface by employing a thick dextran matrix, resulting in a three-dimensional, multilayer distribution of molecules. Despite increasing the binding signal, this method can generate artifacts, due to the diffusion dependence of surface binding, affecting the accuracy of measured affinity constants. On the other hand, when working with planar surface chemistries, an incredibly high sensitivity is required for low molecular weight analytes, and furthermore the standard method for immobilizing single layers of molecules based on self-assembled monolayers (SAM) of epoxysilane has been demonstrated to promote protein denaturation, thus being far from ideal. Here, we will give a concise overview of the impact of tridimensional immobilization of ligands on label-free biosensors, mostly focusing on the effect of diffusion on binding affinity constants measurements. We will comment on how multilayering of probes is certainly useful in terms of increasing the sensitivity of the sensor, but can cause steric hindrance, mass transport and other diffusion effects. On the other hand, probe monolayers on epoxysilane chemistries do not undergo diffusion effect but rather other artifacts can occur due to probe distortion. Finally, a combination of tridimensional polymeric chemistry and probe monolayer is presented and reviewed, showing advantages and disadvantages over the other two approaches.

16.
Biosens Bioelectron ; 201: 113961, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026547

RESUMO

Considering the limitations of well-known traditional detection techniques, innovative research studies have focused on the development of new sensors to offer label-free, highly sensitive, real-time, low-cost, and rapid detection for biomolecular interactions. In this study, we demonstrate immunoglobulin G (IgG) detection in aqueous solutions by using real-time and label-free kinetic measurements of the Interferometric Reflectance Imaging Sensor (IRIS) system. By performing kinetic characterization experiments, the sensor's performance is comprehensively evaluated and a high correlation coefficient value (>0.94) is obtained in the IgG concentration range of 1-50 µg/mL with a low detection limit (0.25 µg/mL or 1.67 nM). Moreover, the highly sensitive imaging system ensures accurate quantification and reliable validation of recorded binding events, offering new perspectives in terms of direct biomarker detection for clinical applications.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G , Interferometria
17.
Biosensors (Basel) ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940240

RESUMO

Anthrax lethal factor (LF) is one of the enzymatic components of the anthrax toxin responsible for the pathogenic responses of the anthrax disease. The ability to screen multiplexed ligands against LF and subsequently estimate the effective kinetic rates (kon and koff) and complementary binding behavior provides critical information useful in diagnostic and therapeutic development for anthrax. Tools such as biolayer interferometry (BLI) and surface plasmon resonance imaging (SPRi) have been developed for this purpose; however, these tools suffer from limitations such as signal jumps when the solution in the chamber is switched or low sensitivity. Here, we present multiplexed antibody affinity measurements obtained by the interferometric reflectance imaging sensor (IRIS), a highly sensitive, label-free optical biosensor, whose stability, simplicity, and imaging modality overcomes many of the limitations of other multiplexed methods. We compare the multiplexed binding results obtained with the IRIS system using two ligands targeting the anthrax lethal factor (LF) against previously published results obtained with more traditional surface plasmon resonance (SPR), which showed consistent results, as well as kinetic information previously unattainable with SPR. Additional exemplary data demonstrating multiplexed binding and the corresponding complementary binding to sequentially injected ligands provides an additional layer of information immediately useful to the researcher.


Assuntos
Antraz , Afinidade de Anticorpos/imunologia , Humanos , Interferometria , Ligantes , Ressonância de Plasmônio de Superfície/métodos
18.
Sci Rep ; 11(1): 23781, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893636

RESUMO

Angiogenesis is an important process in the formation and maintenance of tissues which is driven by a complex system of intracellular and intercellular signaling mechanisms. Endothelial cells taking part in early angiogenesis must select their phenotype as either a tip cells (leading, migratory) or a stalk cells (following). Recent experiments have demonstrated that rapid calcium oscillations within active cells characterize this phenotype selection process and that these oscillations play a necessary role in governing phenotype selection and eventual vessel architecture. In this work, we develop a mathematical model capable of describing these oscillations and their role in phenotype selection then use it to improve our understanding of the biological mechanisms at play. We developed a model based on two previously published and experimentally validated mathematical models of calcium and angiogenesis then use our resulting model to simulate various multi-cell scenarios. We are able to capture essential calcium oscillation dynamics and intercellular communication between neighboring cells. The results of our model show that although the late DLL4 (a transmembrane protein that activates Notch pathway) levels of a cell are connected with its initial IP3 (Inositol 1,4,5-trisphosphate) level, cell-to-cell communication determines its eventual phenotype.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Células Endoteliais/metabolismo , Fenótipo , Algoritmos , Biomarcadores , Comunicação Celular , Células Cultivadas , Humanos , Modelos Biológicos , Transdução de Sinais
19.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810267

RESUMO

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules' functionalities is critically analyzed.

20.
Sensors (Basel) ; 21(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918613

RESUMO

Extracellular vesicles (EVs) have attracted significant attention as impactful diagnostic biomarkers, since their properties are closely related to specific clinical conditions. However, designing experiments that involve EVs phenotyping is usually highly challenging and time-consuming, due to laborious optimization steps that require very long or even overnight incubation durations. In this work, we demonstrate label-free, real-time detection, and phenotyping of extracellular vesicles binding to a multiplexed surface. With the ability for label-free kinetic binding measurements using the Interferometric Reflectance Imaging Sensor (IRIS) in a microfluidic chamber, we successfully optimize the capture reaction by tuning various assay conditions (incubation time, flow conditions, surface probe density, and specificity). A single (less than 1 h) experiment allows for characterization of binding affinities of the EVs to multiplexed probes. We demonstrate kinetic characterization of 18 different probe conditions, namely three different antibodies, each spotted at six different concentrations, simultaneously. The affinity characterization is then analyzed through a model that considers the complexity of multivalent binding of large structures to a carpet of probes and therefore introduces a combination of fast and slow association and dissociation parameters. Additionally, our results confirm higher affinity of EVs to aCD81 with respect to aCD9 and aCD63. Single-vesicle imaging measurements corroborate our findings, as well as confirming the EVs nature of the captured particles through fluorescence staining of the EVs membrane and cargo.


Assuntos
Vesículas Extracelulares , Anticorpos , Interferometria , Cinética , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA