Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 533(3): 493-500, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977946

RESUMO

Silica crystals (silica), which are a major mineral component of volcanic ash and desert dust, contribute to the pathogenesis of pulmonary disorders such as asthma and fibrosis. Although administration of silica or sand dust to rodents exacerbates development of ovalbumin-induced or house dust mite-induced asthma-like airway inflammation, the detailed mechanisms remain unclear. Here, using murine models, we found that silica can induce IL-33 expression in pulmonary epithelial cells. IL-33, but not IL-25 or TSLP, and type 2 cytokines such as IL-5 and IL-13 were critically involved in silica's exacerbation of OVA-induced airway eosinophilia in mice. Innate lymphoid cells (ILCs), but not T, B or NKT cells, were also involved in the setting. Moreover, a scavenger receptor that recognized silica was important for silica's exacerbating effect. These observations suggest that IL-33 induced in epithelial cells by silica activates ILCs to produce IL-5 and/or IL-13, contributing to silica's exacerbation of OVA-induced airway eosinophilia in mice. Our findings provide new insight into the underlying mechanisms of exacerbation of pulmonary disorders such as asthma following inhalation of silica-containing materials such as volcanic ash and desert dust.


Assuntos
Interleucina-33/fisiologia , Eosinofilia Pulmonar/imunologia , Dióxido de Silício/toxicidade , Animais , Asma/imunologia , Citocinas/fisiologia , Interleucina-13/fisiologia , Interleucina-33/biossíntese , Interleucina-5/fisiologia , Interleucinas/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Pneumonia/imunologia , Pneumonia/patologia , Eosinofilia Pulmonar/induzido quimicamente , Receptores Depuradores/fisiologia , Linfopoietina do Estroma do Timo
2.
Sci Rep ; 8(1): 11721, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082755

RESUMO

Chitin, which is a major component of house dust mites (HDM), fungi, crustaceans, etc., can activate immune cells, suggesting that it contributes to development of allergic disorders such as asthma. Although the pathophysiological sensitization route of asthmatic patients to allergens is considered via the respiratory tract, the roles of intranasally-administered chitin in development of asthma remain unclear. After ovalbumin (OVA) challenge, development of airway inflammation was profoundly exacerbated in mice sensitized with OVA in the presence of chitin. The exacerbation was dependent on IL-33, but not IL-25, thymic stromal lymphopoietin or IL-17A. Chitin enhanced IL-33-dependent IL-1ß production by dendritic cells (DCs). Furthermore, chitin- and IL-33-stimulated DC-derived IL-1ß promoted OVA-specific Th2 cell activation, resulting in aggravation of OVA-induced airway inflammation. These findings indicate the adjuvant activity of chitin via a new mechanism and provide important clues for development of therapeutics for allergic disorders caused by HDM, fungi and crustaceans.


Assuntos
Asma/metabolismo , Quitina/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Animais , Asma/imunologia , Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Camundongos
3.
J Allergy Clin Immunol ; 142(1): 207-218.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28889952

RESUMO

BACKGROUND: Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. OBJECTIVE: We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). METHODS: Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3Zp3-Cre mice, which do not have a blood supply. RESULTS: Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. CONCLUSION: Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients.


Assuntos
Asma/fisiopatologia , Sinalização do Cálcio/fisiologia , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Animais , Asma/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos Transgênicos , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Hipersensibilidade Respiratória/metabolismo , Regulação para Cima
5.
J Allergy Clin Immunol ; 138(5): 1395-1403.e6, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27056266

RESUMO

BACKGROUND: Although platelets play a key role in allergic inflammation in addition to their well-established role in hemostasis, the precise mechanisms of how platelets modulate allergic inflammation are not fully understood. IL-33 is an essential regulator of innate immune responses and allergic inflammation. OBJECTIVE: We sought to determine the expression of IL-33 protein by platelets and its functional significance in airway inflammation. METHODS: IL-33 protein in human platelets, the human megakaryocyte cell line MEG-01, and bone marrow-derived mouse megakaryocytes was detected by using Western blot analysis and fluorescent immunostaining. We examined the functional relevance of IL-33 protein in platelets by comparing platelet-intact and platelet-depleted groups in a murine model of IL-33-dependent airway eosinophilia elicited by intranasal administration of papain. We further compared the additive effect of administration of platelets derived from wild-type versus IL-33-deficient mice on the papain-induced eosinophilia. RESULTS: Platelets and their progenitor cells, megakaryocytes, constitutively expressed IL-33 protein (31 kDa). Papain-induced IL-33-dependent airway eosinophilia in mice was significantly attenuated by platelet depletion. Conversely, concomitant administration of platelets derived from wild-type mice but not IL-33-deficient mice enhanced the papain-induced airway eosinophilia. CONCLUSIONS: Our novel findings suggest that platelets might be important cellular sources of IL-33 protein in vivo and that platelet-derived IL-33 might play a role in airway inflammation. Therefore platelets might become an attractive novel therapeutic target for asthma and probably allergic inflammation.


Assuntos
Plaquetas/imunologia , Citocinas/imunologia , Eosinofilia Pulmonar/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células COS , Contagem de Células , Linhagem Celular , Citocinas/genética , Feminino , Humanos , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papaína , Eosinofilia Pulmonar/induzido quimicamente , RNA Mensageiro/metabolismo
6.
PLoS One ; 10(7): e0134226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230091

RESUMO

BACKGROUND: IL-25, IL-33 and TSLP are produced predominantly by epithelial cells and are known to induce Th2-type cytokines. Th2-type cytokines are involved not only in host defense against nematodes, but also in the development of Th2-type allergic diseases. TSLP was reported to be crucial for development of allergic airway inflammation in mice after inhalation of allergens to which they had been sensitized epicutaneously (EC) beforehand. However, the roles of IL-25 and IL-33 in the setting remain unclear. METHODS: Mice deficient in IL-25 and IL-33 were sensitized EC with ovalbumin (OVA) and then challenged intranasally with OVA. Airway inflammation, the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) and airway hyperresponsiveness (AHR) in the mice were determined, respectively, by histological analysis, with a hemocytometer, and by using plethysmograph chambers with a ventilator. Expression of mRNA in the skin and lungs was determined by quantitative PCR, while the BALF levels of myeloperoxidase (MPO) and eosinophil peroxidase (EPO) and the serum levels of IgE were determined by ELISA. RESULTS: Normal OVA-specific Th2- and Th17-cell responses of lymph nodes and spleens were observed in IL-25-deficient (IL-25-/-) and IL-33-/- mice after EC sensitization with OVA. Nevertheless, the number of eosinophils, but not neutrophils, in the BALFs, and the levels of Th2 cytokines, but not Th17 cytokines, in the lungs were significantly decreased in the IL-25-/- and IL-33-/- mice pre-sensitized EC with OVA, followed by inhalation of OVA, whereas their levels of AHR and OVA-specific serum IgE were normal. CONCLUSIONS: Both IL-25 and IL-33 are critical for induction of Th2-type cytokine-mediated allergic airway eosinophilia, but not Th17-type cytokine-mediated airway neutrophilia, at the local sites of lungs in the challenge phase of mice sensitized EC with OVA. They do not affect OVA-specific T-cell induction in the sensitization phase.


Assuntos
Eosinófilos/patologia , Interleucina-17/fisiologia , Interleucina-33/fisiologia , Ovalbumina/administração & dosagem , Hipersensibilidade Respiratória/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Hipersensibilidade Respiratória/patologia
7.
Immunity ; 43(1): 175-86, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200013

RESUMO

House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells.


Assuntos
Inflamação/imunologia , Interleucina-2/imunologia , Interleucinas/imunologia , Mastócitos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Eosinofilia/induzido quimicamente , Humanos , Interleucina-10/imunologia , Interleucina-2/genética , Interleucina-33 , Interleucinas/genética , Interleucinas/farmacologia , Pulmão/citologia , Pulmão/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papaína/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Pyroglyphidae/imunologia , Células Th2/imunologia
9.
Am J Respir Cell Mol Biol ; 51(3): 344-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24661197

RESUMO

Silica crystals (silica), which are the main mineral component of volcanic ash and desert dust, can activate the caspase-1-activating inflammasome in phagocytic cells to secrete IL-1ß. Although inhalation of silica-containing dust is known to exacerbate chronic respiratory diseases, probably through inflammasome activation, its direct effects on bronchial epithelial cells remain unclear. Here, we show that silica and double-stranded RNA (dsRNA) synergistically induces caspase-9-dependent apoptosis, but not inflammasome activation, of bronchial epithelial cells. Intranasal administration of silica and dsRNA to mice synergistically enhanced neutrophil infiltration in the airway without IL-1ß release in the bronchoalveolar lavage fluid. Histopathological analysis revealed that silica or dsRNA alone induced slight airway inflammation, whereas combined administration significantly enhanced airway inflammation and epithelial damage. These novel findings suggest that inhalation of silica-containing dust may cause inflammasome-independent airway inflammation, possibly by damaging the epithelial barrier, especially at the time of viral infection. These responses may also be involved in acute lung injury caused by inhaled silica-containing dust.


Assuntos
Apoptose , Brônquios/metabolismo , Caspase 9/metabolismo , Inflamação/patologia , RNA de Cadeia Dupla/metabolismo , Dióxido de Silício/química , Administração Intranasal , Poluentes Atmosféricos/química , Animais , Brônquios/citologia , Líquido da Lavagem Broncoalveolar , Sobrevivência Celular , Poeira , Células Epiteliais/citologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/química , Mucosa Respiratória/metabolismo
11.
Eur J Immunol ; 42(8): 2121-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22585560

RESUMO

High-dose infusion of IgG (IVIG) is used to treat autoimmune and inflammatory diseases, including Kawasaki disease (KD). Although the immunomodulatory effects of IVIG on blood cells such as macrophages have been well studied, its effects on tissue cells remain unclear. Here, we show that high-dose IgG specifically and completely inhibited TNF-α-induced, but not IL-1ß-induced, secretion of proinflammatory cytokines such as G-CSF and IL-6 by cultured human coronary artery endothelial cells (HCAECs). High-dose IgG did not inhibit TNF-α-mediated early signaling events of the NF-κB and MAPK pathways but it potently inhibited gene expression of G-CSF and IL-6 12 h after TNF-α-stimulation. Interestingly, suppression of the G-CSF and IL-6 gene expression correlated closely with functional inhibition of a transcription factor, C/EBPδ, whose binding sites in the promoters of G-CSF and IL-6 have been shown to be critical for their transcriptional activation. Furthermore, the inhibitory effect of intact IgG on HCAECs was exerted mainly via its F(ab')(2) fragment, and not its Fc fragment. These findings suggest that the clinical effects of IVIG on KD patients are at least in part due to its direct anti-inflammatory effects on the coronary endothelium, which is a major lesion site in the pathogenesis of KD.


Assuntos
Vasos Coronários/imunologia , Células Endoteliais/imunologia , Imunoglobulina G/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Interleucina-1beta/imunologia , Interleucina-6/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/terapia , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA