Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13284-13297, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524493

RESUMO

Hyperuricemia, which usually results in metabolic syndrome symptoms, is increasing rapidly all over the world and becoming a global public health issue. Xanthine oxidase (XO) is regarded as a key drug target for the treatment of this disease. Therefore, finding natural, nontoxic, and highly active XO inhibitors is quite important. To get insights into inhibitory potential toward XO and determine antioxidant action mechanism depending on the molecular structure, plant flavonoid blumeatin was investigated for the first time by Fourier transform infrared (FTIR) spectroscopy, density functional theory (DFT), ADME/Tox (absorption, distribution, metabolism, excretion, and toxicity) analysis, and molecular docking study. Theoretical findings indicated that blumeatin has high radical scavenging activity due to its noncoplanarity and over twisted torsion angle (-94.64°) with respect to its flavanone skeleton could explain that there might be a correlation between antioxidant activity and planarity of blumeatin. Based on the ADME/Tox analysis, it is determined that blumeatin has a high absorption profile in the human intestine (81.93%), and this plant flavonoid is not carcinogenic or mutagenic. A molecular docking study showed that Thr1010, Val1011, Phe914, and Ala1078 are the main amino acid residues participating in XO's interaction with blumeatin via hydrogen bonds.

2.
Histochem Cell Biol ; 161(1): 43-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700206

RESUMO

Current cancer studies focus on molecular-targeting diagnostics and interactions with surroundings; however, there are still gaps in characterization based on topological differences and elemental composition. Glioblastoma (GBM cells; GBMCs) is an astrocytic aggressive brain tumor. At the molecular level, GBMCs and astrocytes may differ, and cell elemental/topological analysis is critical for identifying potential new cancer targets. Here, we used U87 MG cells for GBMCS. U87 MG cell lines, which are frequently used in glioblastoma research, are an important tool for studying the various features and underlying mechanisms of this aggressive brain tumor. For the first time, atomic force microscopy (AFM), scanning electron microscopy (SEM) accompanied by energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) are used to report the topology and chemistry of cancer (U87 MG) and healthy (SVG p12) cells. In addition, F-actin staining and cytoskeleton-based gene expression analyses were performed. The degree of gene expression for genes related to the cytoskeleton was similar; however, the intensity of F-actin, anisotropy values, and invasion-related genes were different. Morphologically, GBMCs were longer and narrower while astrocytes were shorter and more disseminated based on AFM. Furthermore, the roughness values of these cells differed slightly between the two call types. In contrast to the rougher astrocyte surfaces in the lamellipodial area, SEM-EDS analysis showed that elongated GBMCs displayed filopodial protrusions. Our investigation provides considerable further insight into rapid cancer cell characterization in terms of a combinatorial spectroscopic and microscopic approach.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Actinas , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122516, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868025

RESUMO

This study represents detailed vibrational analysis of naphthalene bisbenzimidazole (NBBI), perylene bisbenzimidazole (PBBI), and naphthalene imidazole (NI) by vibrational spectroscopic (Fourier Transform Infrared (FT-IR) and Raman), Atomic Force Microscopic (AFM) and quantum chemical studies for the first time. These sorts of compounds provide an opportunity to build potential n-type organic thin film phototransistors which can be used as organic semiconductors. Optimized molecular structures and vibrational wavenumbers of these molecules in their ground states have been calculated by Density Functional Theory (DFT) using B3LYP functional with 6-311++G(d,p) basis set. Finally, theoretical UV-Visible spectrum was predicted and Light Harvesting Efficiencies (LHE) were evaluated. AFM analysis revealed that PBBI has the highest surface roughness thus exhibits an increase in high Jsc value and high conversion efficiency.

4.
Chem Biol Interact ; 366: 110131, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037876

RESUMO

Since cell membranes are complex systems, the use of model lipid bilayers is quite important for the study of their interactions with bioactive molecules. Mammalian cell membranes require cholesterol (CHOL) for their structure and function. For this reason, the mixtures of phospholipid and cholesterol are necessary to use in model membrane studies to better simulate the real systems. In the present study, we investigated the effect of the incorporation of hesperidin in model membranes consisting of dimyristoylphosphatidylcholine (DMPC) and CHOL by using differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). ATR-FTIR results demonstrated that hesperidin increases the fluidity of the DMPC/CHOL binary system. DSC findings indicated that the presence of 5 mol% hesperidin induces a broadening of the main phase transition consisting of three overlapping components. AFM experiments showed that hesperidin increases the thickness of DMPC/CHOL lipid bilayer model membranes. In addition to experimental results, molecular docking studies were conducted with hesperidin and human lanosterol synthase (LS), which is an enzyme found in the final step of cholesterol synthesis, to characterize hesperidin's interactions with its surrounding via its hydroxyl and oxygen groups. Then, hesperidin's ADME/Tox (absorption, distribution, metabolism, excretion and toxicity) profile was computed to see the potential impact on living system. In conclusion, considering the data obtained from experimental studies, this work ensures molecular insights in the interaction between a flavonoid, as an antioxidant drug model, and lipids mimicking those found in mammalian membranes. Moreover, computational studies demonstrated that hesperidin may be a great potential for use as a therapeutic agent for hypercholesterolemia due to its antioxidant property.


Assuntos
Dimiristoilfosfatidilcolina , Hesperidina , Animais , Antioxidantes , Varredura Diferencial de Calorimetria , Colesterol , Humanos , Bicamadas Lipídicas/metabolismo , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Oxigênio , Termodinâmica
5.
Acta Histochem ; 123(6): 151763, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333240

RESUMO

While embryonic stem cells and cancer cells are known to have many similarities in signalling pathways, healthy somatic cells are known to be different in many ways. Characterization of embryonic stem cell is crucial for cancer development and cancer recurrence due to the shared signalling pathways and life course with cancer initiator and cancer stem cells. Since embryonic stem cells are the sources of the somatic and cancer cells, it is necessary to reveal the relevance between them. The past decade has seen the importance of interdisciplinary studies and it is obvious that the reflection of the physical/chemical phenomena occurring on the cell biology has attracted much more attention. For this reason, the aim of this study is to elementally and topologically characterize the mouse embryonic stem cells, mouse lung squamous cancer cells, and mouse skin fibroblast cells by using Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) supported with Electron Dispersive Spectroscopy (EDS) techniques in a complementary way. Our AFM findings revealed that roughness data of the mouse embryonic stem cells and cancer cells were similar and somatic cells were found to be statistically different from these two cell types. However, based on both XPS and SEM-EDS results, surface elemental ratios vary in mouse embryonic stem cells, cancer cells and somatic cells. Our results showed that these complementary spectroscopic and microscopic techniques used in this work are very effective in cancer and stem cell characterization and have the potential to gather more detailed information on relevant biological samples.


Assuntos
Fibroblastos , Neoplasias Pulmonares , Células-Tronco Embrionárias Murinas , Neoplasias de Células Escamosas , Pele , Animais , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia Eletroquímica de Varredura , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/ultraestrutura , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/ultraestrutura , Pele/metabolismo , Pele/ultraestrutura
6.
Int J Biol Macromol ; 184: 463-475, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171252

RESUMO

Biofilm composition from fish myofibrillar protein (FMP) and chitosan solution (CS) incorporated with rosemary extract (RE) was developed and applied to monitor the freshness of fish fillets. The effects of different concentrations of RE as well as physical, mechanical, structural and functional properties of FMP/CS films were investigated. Films containing RE showed reduced water solubility and water vapor permeability and enhanced tensile strength and elongation at break. Results also showed good compatibility of the components and good dispersion of RE in the matrix. However, the content of RE (0.2%, v/v) added in the composite films produced aggregations and had negative effects on their film-forming properties. The antioxidant capacity of composite films was related to the level of RE and demonstrated by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay. Chilled grass carp fillets wrapped with different films to evaluate the preservative effect. Results of thiobarbituric acid reactive substances, pH value, Free amino acid and total volatile basic nitrogen indicated that FMP/CS/RE composite film could protect the fish fillet well and inhibit the lipid oxidation. The developed FMP/CS/RE composite films possess the potential to be applied as edible films in the food packaging industry and food cold chain transportation.


Assuntos
Antioxidantes/farmacologia , Quitosana/química , Proteínas Musculares/química , Extratos Vegetais/farmacologia , Rosmarinus/química , Animais , Antioxidantes/química , Carpas , Filmes Comestíveis , Proteínas de Peixes/química , Embalagem de Alimentos , Armazenamento de Alimentos , Peroxidação de Lipídeos/efeitos dos fármacos , Extratos Vegetais/química , Solubilidade , Vapor , Resistência à Tração
7.
J Mol Struct ; 1228: 129449, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071354

RESUMO

Global health is under heavy threat by a worldwide pandemic caused by a new type of coronavirus (COVID-19) since its rapid spread in China in 2019 [1]. Currently, there are no approved specific drugs and effective treatment for COVID-19 infection, but several available drugs are known to facilitate tentative treatment. Since drug design, development and testing procedures are time-consuming [2], [1], [2], [3], virtual screening studies with the aid of available drug databases take the initiative at this point and save the time. Besides, drug repurposing strategies promises to identify new agents for the novel diseases in a time-critical fashion. In this study, we used structure based virtual screening method on FDA approved drugs and compounds in clinical trials. As a result of this study we choose three most prominent compounds for further studies. Here we show that these three compounds (dobutamine and its two derivatives) can be considered as promising inhibitors for SARS-CoV-2 main protease and results also demonstrate the possible interactions of dobutamine and its derivatives with SARS-CoV-2 main protease (6W63) [6]. Our efforts in this work directly address current urgency of a new drug discovery against COVID-19.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt A: 81-94, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24211173

RESUMO

Monomers of trans- (TS) and cis-stilbene (CS) were isolated in cryogenic argon and xenon matrices, and their infrared (IR) spectra were fully assigned and interpreted. The interpretation of the vibrational spectra received support from theoretical calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of theory. In situ broadband UV irradiation of the matrix-isolated CS led to its isomerization to TS, which appeared in the photolysed matrices in both non-planar and planar configurations. The non-planar species was found to convert into the more stable planar form upon subsequent annealing of the matrices at higher temperature. TS was found to be photostable under the used experimental conditions. The structure of the non-planar TS form was assigned based on the comparison of its observed IR spectrum with those theoretically predicted for different conformations of TS. Chemometrics was used to make this assignment. Additional reasoning on the structure of the studied stilbenes is presented taking as basis results of the Natural Bond Orbital analysis.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estilbenos/química , Argônio/química , Isomerismo , Estrutura Molecular , Fotoquímica/métodos , Estilbenos/isolamento & purificação , Raios Ultravioleta , Vibração , Xenônio/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-22617221

RESUMO

Carvedilol (CRV) is an important medicament for heart arrhythmia. The aim of this work was the interpretation of its vibrational spectra with consideration on the solvent effect. Infrared and Raman spectra were recorded in solid state as well in solution. The experimental spectra were evaluated using DFT quantum chemical calculations computing the optimized structure, atomic net charges, vibrational frequencies and force constants. The same calculations were done for the molecule in DMSO and aqueous solutions applying the PCM method. The calculated force constants were scaled to the experimentally observed solid state frequencies. The characters of the vibrational modes were determined by their potential energy distributions. Solvent effects on the molecular properties were interpreted. Based on these results vibrational spectra were simulated.


Assuntos
Carbazóis/química , Propanolaminas/química , Solventes/química , Vibração , Carvedilol , Simulação por Computador , Dimetil Sulfóxido/química , Cinética , Conformação Molecular , Soluções , Espectrofotometria Infravermelho , Análise Espectral Raman , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA