Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108195

RESUMO

Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.


Assuntos
Drosophila melanogaster/genética , Infertilidade/genética , Animais , Animais Geneticamente Modificados , Feminino , Engenharia Genética , Masculino
2.
Antioxidants (Basel) ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271806

RESUMO

Oxidative stress is a hallmark of metabolic disease, though the mechanisms that define this link are not fully understood. Irreversible modification of proteins by reactive lipid aldehydes (protein carbonylation) is a major consequence of oxidative stress in adipose tissue and the substrates and specificity of this modification are largely unexplored. Here we show that histones are avidly modified by 4-hydroxynonenal (4-HNE) in vitro and in vivo. Carbonylation of histones by 4-HNE increased with age in male flies and visceral fat depots of mice and was potentiated in genetic (ob/ob) and high-fat feeding models of obesity. Proteomic evaluation of in vitro 4-HNE- modified histones led to the identification of both Michael and Schiff base adducts. In contrast, mapping of sites in vivo from obese mice exclusively revealed Michael adducts. In total, we identified 11 sites of 4-hydroxy hexenal (4-HHE) and 10 sites of 4-HNE histone modification in visceral adipose tissue. In summary, these results characterize adipose histone carbonylation as a redox-linked epigenomic mark associated with metabolic disease and aging.

3.
PLoS Genet ; 16(11): e1009180, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137115

RESUMO

The field performance of Sterile Insect Technique (SIT) is improved by sex-sorting and releasing only sterile males. This can be accomplished by resource-intensive separation of males from females by morphology. Alternatively, sex-ratio biasing genetic constructs can be used to selectively remove one sex without the need for manual or automated sorting, but the resulting genetically engineered (GE) control agents would be subject to additional governmental regulation. Here we describe and demonstrate a genetic method for the batch production of non-GE males. This method could be applied to generate the heterogametic sex (XY, or WZ) in any organism with chromosomal sex determination. We observed up to 100% sex-selection with batch cultures of more than 103 individuals. Using a stringent transgene detection assay, we demonstrate the potential of mass production of transgene free males.


Assuntos
Engenharia Genética/métodos , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Cromossomos Sexuais/genética , Animais , Animais Geneticamente Modificados/fisiologia , Drosophila melanogaster/genética , Feminino , Masculino , Modelos Animais , Análise para Determinação do Sexo/métodos , Processos de Determinação Sexual/genética , Transgenes/genética
4.
Nat Commun ; 11(1): 4468, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901021

RESUMO

Speciation constrains the flow of genetic information between populations of sexually reproducing organisms. Gaining control over mechanisms of speciation would enable new strategies to manage wild populations of disease vectors, agricultural pests, and invasive species. Additionally, such control would provide safe biocontainment of transgenes and gene drives. Here, we demonstrate a general approach to create engineered genetic incompatibilities (EGIs) in the model insect Drosophila melanogaster. EGI couples a dominant lethal transgene with a recessive resistance allele. Strains homozygous for both elements are fertile and fecund when they mate with similarly engineered strains, but incompatible with wild-type strains that lack resistant alleles. EGI genotypes can also be tuned to cause hybrid lethality at different developmental life-stages. Further, we demonstrate that multiple orthogonal EGI strains of D. melanogaster can be engineered to be mutually incompatible with wild-type and with each other. EGI is a simple and robust approach in multiple sexually reproducing organisms.


Assuntos
Drosophila melanogaster/genética , Engenharia Genética/métodos , Especiação Genética , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Feminino , Genes de Insetos , Genes Letais , Genótipo , Hibridização Genética , Masculino , Modelos Genéticos , Transgenes
5.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633716

RESUMO

Organ growth and size are finely tuned by intrinsic and extrinsic signaling molecules. In Drosophila, the BMP family member Dpp is produced in a limited set of imaginal disc cells and functions as a classic morphogen to regulate pattern and growth by diffusing throughout imaginal discs. However, the role of TGFß/Activin-like ligands in disc growth control remains ill-defined. Here, we demonstrate that Myoglianin (Myo), an Activin family member, and a close homolog of mammalian Myostatin (Mstn), is a muscle-derived extrinsic factor that uses canonical dSmad2-mediated signaling to regulate wing size. We propose that Myo is a myokine that helps mediate an allometric relationship between muscles and their associated appendages.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Discos Imaginais/crescimento & desenvolvimento , Proteínas Smad Reguladas por Receptor/fisiologia , Fator de Crescimento Transformador beta/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Discos Imaginais/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Músculos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
6.
Genetics ; 213(4): 1447-1464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585954

RESUMO

Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinß (Actß), a member of the TGF-ß superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actß mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actß control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actß is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actß is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.


Assuntos
Tamanho Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Neurônios Motores/metabolismo , Envelhecimento , Animais , Núcleo Celular/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Masculino , Músculos/anatomia & histologia , Mutação/genética , Tamanho do Órgão , Pupa/anatomia & histologia , Transdução de Sinais
8.
Artigo em Inglês | MEDLINE | ID: mdl-28130362

RESUMO

The transforming growth factor ß (TGF-ß) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-ß family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-ß family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.


Assuntos
Drosophila/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Redes e Vias Metabólicas , Modelos Moleculares , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Evolution ; 64(11): 3242-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20649813

RESUMO

Evolutionary theory predicts that the strength of natural selection to reduce the mutation rate should be stronger in self-fertilizing than in outcrossing taxa. However, the relative efficacy of selection on mutation rate relative to the many other factors influencing the evolution of any species is poorly understood. To address this question, we allowed mutations to accumulate for ∼100 generations in several sets of "mutation accumulation" (MA) lines in three species of gonochoristic (dieocious) Caenorhabditis (C. remanei, C. brenneri, C. sp. 5) as well as in a dioecious strain of the historically self-fertile hermaprohodite C. elegans. In every case, the rate of mutational decay is substantially greater in the gonochoristic taxa than in C. elegans (∼4× greater on average). Residual heterozygosity in the ancestral controls of these MA lines introduces some complications in interpreting the results, but circumstantial evidence suggests the results are not primarily due to inbreeding depression resulting from residual segregating variation. The results suggest that natural selection operates to optimize the mutation rate in Caenorhabditis and that the strength (or efficiency) of selection differs consistently on the basis of mating system, as predicted by theory. However, context-dependent environmental and/or synergistic epistasis could also explain the results.


Assuntos
Caenorhabditis/genética , Cruzamentos Genéticos , Mutação , Animais , Análise Mutacional de DNA , Evolução Molecular , Feminino , Variação Genética , Heterozigoto , Masculino , Modelos Genéticos , Reprodução , Seleção Genética , Comportamento Sexual Animal , Especificidade da Espécie
10.
Genetics ; 183(2): 685-92, 1SI-19SI, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19667133

RESUMO

The genetic variation present in a species depends on the interplay between mutation, population size, and natural selection. At mutation-(purifying) selection balance (MSB) in a large population, the standing genetic variance for a trait (VG) is predicted to be proportional to the mutational variance for the trait (VM); VM is proportional to the mutation rate for the trait. The ratio VM/VG predicts the average strength of selection (S) against a new mutation. Here we compare VM and VG for lifetime reproductive success (approximately fitness) and body volume in two species of self-fertilizing rhabditid nematodes, Caenorhabditis briggsae and C. elegans, which the evidence suggests have different mutation rates. Averaged over traits, species, and populations within species, the relationship between VG and VM is quite stable, consistent with the hypothesis that differences among groups in standing variance can be explained by differences in mutational input. The average (homozygous) selection coefficient inferred from VM/VG is a few percent, smaller than typical direct estimates from mutation accumulation (MA) experiments. With one exception, the variance present in a worldwide sample of these species is similar to the variance present within a sample from a single locale. These results are consistent with specieswide MSB and uniform purifying selection, but genetic draft (hitchhiking) is a plausible alternative possibility.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis/genética , Variação Genética , Mutação , Algoritmos , Animais , Tamanho Corporal/genética , Feminino , Endogamia , Masculino , Modelos Genéticos , Reprodução/genética , Seleção Genética , Especificidade da Espécie
11.
J Gerontol A Biol Sci Med Sci ; 64(11): 1134-45, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19671885

RESUMO

The evolutionary mechanisms maintaining genetic variation in life span, particularly post-reproductive life span, are poorly understood. We characterized the effects of spontaneous mutations on life span in the rhabditid nematodes Caenorhabditis elegans and C. briggsae and standing genetic variance for life span and correlation of life span with fitness in C. briggsae. Mutations decreased mean life span, a signature of directional selection. Mutational correlations between life span and fitness were consistently positive. The average selection coefficient against new mutations in C. briggsae was approximately 2% when homozygous. The pattern of phylogeographic variation in life span is inconsistent with global mutation-selection balance (MSB), but MSB appears to hold at the local level. Standing genetic correlations in C. briggsae reflect mutational correlations at a local scale but not at a broad phylogeographic level. At the local scale, results are broadly consistent with predictions of the "mutation accumulation" hypothesis for the evolution of aging.


Assuntos
Envelhecimento/genética , Caenorhabditis/genética , Variação Genética , Mutação , Seleção Genética , Animais , Caenorhabditis elegans/genética , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA