Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470486

RESUMO

IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Interleucina-17 , Queratinócitos , Receptores de Interleucina-17 , Ribonucleases , Transdução de Sinais , Fator de Transcrição 4 , Animais , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos , Queratinócitos/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Inflamação/metabolismo , Inflamação/genética , Modelos Animais de Doenças , Epiderme/metabolismo , Dermatite/metabolismo , Dermatite/genética , Dermatite/imunologia , Dermatite/patologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica
2.
iScience ; 27(2): 108986, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327798

RESUMO

Interferon (IFN) activity exhibits a gender bias in human skin, skewed toward females. We show that HERC6, an IFN-induced E3 ubiquitin ligase, is induced in human keratinocytes through the epidermal type I IFN; IFN-κ. HERC6 knockdown in human keratinocytes results in enhanced induction of interferon-stimulated genes (ISGs) upon treatment with a double-stranded (ds) DNA STING activator cGAMP but not in response to the RNA-sensing TLR3 agonist. Keratinocytes lacking HERC6 exhibit sustained STING-TBK1 signaling following cGAMP stimulation through modulation of LATS2 and TBK1 activity, unmasking more robust ISG responses in female keratinocytes. This enhanced female-biased immune response with loss of HERC6 depends on VGLL3, a regulator of type I IFN signature. These data identify HERC6 as a previously unrecognized negative regulator of ISG expression specific to dsDNA sensing and establish it as a regulator of female-biased immune responses through modulation of STING signaling.

3.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051587

RESUMO

Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/genética , Via de Sinalização Hippo , Fibrose
4.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928117

RESUMO

CRISPR/Cas9 has been proposed as a treatment for genetically inherited skin disorders. Here we report that CRISPR transfection activates STING-dependent antiviral responses in keratinocytes, resulting in heightened endogenous interferon (IFN) responses through induction of IFN-κ, leading to decreased plasmid stability secondary to induction of the cytidine deaminase gene APOBEC3G. Notably, CRISPR-generated KO keratinocytes had permanent suppression of IFN-κ and IFN-stimulated gene (ISG) expression, secondary to hypermethylation of the IFNK promoter region by the DNA methyltransferase DNMT3B. JAK inhibition via baricitinib prior to CRISPR transfection increased transfection efficiency, prevented IFNK promoter hypermethylation, and restored normal IFN-κ activity and ISG responses. This work shows that CRISPR-mediated gene correction alters antiviral responses in keratinocytes, has implications for future gene therapies for inherited skin diseases using CRISPR technology, and suggests pharmacologic JAK inhibition as a tool for facilitating and attenuating inadvertent selection effects in CRISPR/Cas9 therapeutic approaches.


Assuntos
Interferon Tipo I , Antivirais , DNA/metabolismo , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Humanos
5.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35900871

RESUMO

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.


Assuntos
Epiderme , Análise de Célula Única , Carbono/metabolismo , Ceramidas/metabolismo , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo
6.
J Allergy Clin Immunol ; 149(2): 640-649.e5, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34343561

RESUMO

BACKGROUND: A major issue with the current management of psoriasis is our inability to predict treatment response. OBJECTIVE: Our aim was to evaluate the ability to use baseline molecular expression profiling to assess treatment outcome for patients with psoriasis. METHODS: We conducted a longitudinal study of 46 patients with chronic plaque psoriasis treated with anti-TNF agent etanercept, and molecular profiles were assessed in more than 200 RNA-seq samples. RESULTS: We demonstrated correlation between clinical response and molecular changes during the course of the treatment, particularly for genes responding to IL-17A/TNF in keratinocytes. Intriguingly, baseline gene expressions in nonlesional, but not lesional, skin were the best marker of treatment response at week 12. We identified USP18, a known regulator of IFN responses, as positively correlated with Psoriasis Area and Severity Index (PASI) improvement (P = 9.8 × 10-4) and demonstrate its role in regulating IFN/TNF responses in keratinocytes. Consistently, cytokine gene signatures enriched in baseline nonlesional skin expression profiles had strong correlations with PASI improvement. Using this information, we developed a statistical model for predicting PASI75 (ie, 75% of PASI improvement) at week 12, achieving area under the receiver-operating characteristic curve value of 0.75 and up to 80% accurate PASI75 prediction among the top predicted responders. CONCLUSIONS: Our results illustrate feasibility of assessing drug response in psoriasis using nonlesional skin and implicate involvement of IFN regulators in anti-TNF responses.


Assuntos
Citocinas/biossíntese , Psoríase/tratamento farmacológico , Pele/imunologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Citocinas/genética , Humanos , Estudos Longitudinais , Psoríase/imunologia , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma
7.
J Invest Dermatol ; 142(6): 1587-1596.e2, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34808239

RESUMO

Tape stripping is a minimally invasive, nonscarring method that can be utilized to assess gene expression in the skin but is infrequently used given technical constraints. By comparing different tape stripping technologies and full-thickness skin biopsy results of lesional and nonlesional psoriatic skin from the same patients, we demonstrate that tape stripping with optimized high-resolution transcriptomic profiling can be used to effectively assess and characterize inflammatory responses in the skin. Upon comparison with single-cell RNA-sequencing data from psoriatic full-thickness skin biopsies, we illustrate that tape-stripping efficiently captures the transcriptome of the upper layers of the epidermis with sufficient resolution to assess the molecular components of the feed-forward immune amplification pathway in psoriasis. Notably, nonlesional psoriatic skin sampled by tape stripping demonstrates activated, proinflammatory changes when compared to healthy control skin, suggesting a prepsoriatic state, which is not captured on full-thickness skin biopsy transcriptome profiling. This work illustrates an approach to assess inflammatory response in the epidermis by combining noninvasive sampling with high throughput RNA-sequencing, providing a foundation for biomarker discoveries and mechanism of action studies for inflammatory skin conditions.


Assuntos
Psoríase , RNA , Epiderme/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Psoríase/patologia , RNA/genética , RNA/metabolismo , Pele/patologia
8.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491907

RESUMO

Altered epidermal differentiation along with increased keratinocyte proliferation is a characteristic feature of psoriasis and pityriasis rubra pilaris (PRP). However, despite this large degree of overlapping clinical and histologic features, the molecular signatures these skin disorders share are unknown. Using global transcriptomic profiling, we demonstrate that plaque psoriasis and PRP skin lesions have high overlap, with all differentially expressed genes in PRP relative to normal skin having complete overlap with those in psoriasis. The major common pathway shared between psoriasis and PRP involves the phospholipases PLA2G2F, PLA2G4D, and PLA2G4E, which were found to be primarily expressed in the epidermis. Gene silencing each of the 3 PLA2s led to reduction in immune responses and epidermal thickness both in vitro and in vivo in a mouse model of psoriasis, establishing their proinflammatory roles. Lipidomic analyses demonstrated that PLA2s affect mobilization of a phospholipid-eicosanoid pool, which is altered in psoriatic lesions and functions to promote immune responses in keratinocytes. Taken together, our results highlight the important role of PLA2s as regulators of epidermal barrier homeostasis and inflammation, identify PLA2s as a shared pathogenic mechanism between PRP and psoriasis, and as potential therapeutic targets for both diseases.


Assuntos
Fosfolipases A2/metabolismo , Pitiríase Rubra Pilar/enzimologia , Psoríase/enzimologia , Animais , Humanos , Camundongos
9.
J Invest Dermatol ; 141(10): 2436-2448, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864770

RESUMO

Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.


Assuntos
Epiderme/patologia , Inflamação/etiologia , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Diferenciação Celular , Células Cultivadas , Dermatite Atópica/etiologia , Humanos , NF-kappa B/fisiologia , Psoríase/etiologia , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia
10.
Cell Rep ; 34(5): 108689, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535046

RESUMO

The epidermis regenerates continually to maintain a protective barrier at the body's surface composed of differentiating keratinocytes. Maturation of this stratified tissue requires that keratinocytes undergo wholesale organelle degradation upon reaching the outermost tissue layers to form compacted, anucleate cells. Through live imaging of organotypic cultures of human epidermis, we find that regulated breakdown of mitochondria is critical for epidermal development. Keratinocytes in the upper layers initiate mitochondrial fragmentation, depolarization, and acidification upon upregulating the mitochondrion-tethered autophagy receptor NIX. Depleting NIX compromises epidermal maturation and impairs mitochondrial elimination, whereas ectopic NIX expression accelerates keratinocyte differentiation and induces premature mitochondrial fragmentation via the guanosine triphosphatase (GTPase) DRP1. We further demonstrate that inhibiting DRP1 blocks NIX-mediated mitochondrial breakdown and disrupts epidermal development. Our findings establish mitochondrial degradation as a key step in terminal keratinocyte differentiation and define a pathway operating via the mitophagy receptor NIX in concert with DRP1 to drive epidermal morphogenesis.


Assuntos
Dinaminas/metabolismo , Células Epidérmicas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células 3T3 , Animais , Diferenciação Celular , Células Epidérmicas/citologia , Epiderme/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos
11.
Cell Mol Immunol ; 18(2): 307-317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32814870

RESUMO

Psoriasis is a chronic inflammatory skin condition that has a fairly wide range of clinical presentations. Plaque psoriasis, which is the most common manifestation of psoriasis, is located on one end of the spectrum, dominated by adaptive immune responses, whereas the rarer pustular psoriasis lies on the opposite end, dominated by innate and autoinflammatory immune responses. In recent years, genetic studies have identified six genetic variants that predispose to pustular psoriasis, and these have highlighted the role of IL-36 cytokines as central to pustular psoriasis pathogenesis. In this review, we discuss the presentation and clinical subtypes of pustular psoriasis, contribution of genetic predisposing variants, critical role of the IL-36 family of cytokines in disease pathophysiology, and treatment perspectives for pustular psoriasis. We further outline the application of appropriate mouse models for the study of pustular psoriasis and address the outstanding questions and issues related to our understanding of the mechanisms involved in pustular psoriasis.


Assuntos
Autoimunidade , Inflamação/complicações , Psoríase/patologia , Animais , Humanos , Inflamação/genética , Psoríase/etiologia , Supuração
12.
Sci Adv ; 6(14): eaay3245, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270034

RESUMO

In the skin, antiviral proteins and other immune molecules serve as the first line of innate antiviral defense. Here, we identify and characterize the induction of cutaneous innate antiviral proteins in response to IL-27 and its functional role during cutaneous defense against Zika virus infection. Transcriptional and phenotypic profiling of epidermal keratinocytes treated with IL-27 demonstrated activation of antiviral proteins OAS1, OAS2, OASL, and MX1 in the skin of both mice and humans. IL-27-mediated antiviral protein induction was found to occur in a STAT1- and IRF3-dependent but STAT2-independent manner. Moreover, using IL27ra mice, we demonstrate a significant role for IL-27 in inhibiting Zika virus morbidity and mortality following cutaneous, but not intravenous, inoculation. Together, our results demonstrate a critical and previously unrecognized role for IL-27 in cutaneous innate antiviral immunity against Zika virus.


Assuntos
Resistência à Doença , Interações Hospedeiro-Patógeno , Imunidade Inata , Interleucinas/metabolismo , Transdução de Sinais , Infecção por Zika virus/etiologia , Infecção por Zika virus/metabolismo , Zika virus/imunologia , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Resistência à Doença/imunologia , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Fator de Transcrição STAT1/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/virologia
13.
J Clin Invest ; 130(6): 3151-3157, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32155135

RESUMO

Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease hypothesized to promote inflammation via cleavage of protease-activated receptor 1 (PAR1) and PAR2. KLK6 levels are elevated in multiple inflammatory and autoimmune conditions, but no definitive role in pathogenesis has been established. Here, we show that skin-targeted overexpression of KLK6 causes generalized, severe psoriasiform dermatitis with spontaneous development of debilitating psoriatic arthritis-like joint disease. The psoriatic skin and joint phenotypes are reversed by normalization of skin KLK6 levels and attenuated following genetic elimination of PAR1 but not PAR2. Conservation of this regulatory pathway was confirmed in human psoriasis using vorapaxar, an FDA-approved PAR1 antagonist, on explanted lesional skin from patients with psoriasis. Beyond defining a critical role for KLK6/PAR1 signaling in promoting psoriasis, our results demonstrate that KLK6/PAR1-mediated inflammation in the skin alone is sufficient to drive inflammatory joint disease. Further, we identify PAR1 as a promising cytokine-independent target in therapy of psoriasis and psoriatic arthritis.


Assuntos
Artrite Psoriásica/metabolismo , Dermatite/metabolismo , Calicreínas/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais , Pele/metabolismo , Animais , Artrite Psoriásica/genética , Artrite Psoriásica/patologia , Dermatite/genética , Dermatite/patologia , Feminino , Humanos , Calicreínas/genética , Masculino , Camundongos , Camundongos Transgênicos , Receptor PAR-1/genética , Pele/patologia
14.
J Allergy Clin Immunol ; 145(5): 1406-1415, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31891686

RESUMO

BACKGROUND: Although multiple studies have assessed molecular changes in chronic atopic dermatitis (AD) lesions, little is known about the transition from acute to chronic disease stages, and the factors and mechanisms that shape chronic inflammatory activity. OBJECTIVES: We sought to assess the global transcriptome changes that characterize the progression from acute to chronic stages of AD. METHODS: We analyzed transcriptome changes in paired nonlesional skin, acute and chronic AD lesions from 11 patients and 38 healthy controls by RNA-sequencing, and conducted in vivo and histological assays to evaluate findings. RESULTS: Our data demonstrate that approximately 74% of the genes dysregulated in acute lesions remain or are further dysregulated in chronic lesions, whereas only 34% of the genes dysregulated in chronic lesions are altered already in the acute stage. Nonlesional AD skin exhibited enrichment of TNF, TH1, TH2, and TH17 response genes. Acute lesions showed marked dendritic-cell signatures and a prominent enrichment of TH1, TH2, and TH17 responses, along with increased IL-36 and thymic stromal lymphopoietin expression, which were further heightened in chronic lesions. In addition, genes involved in skin barrier repair, keratinocyte proliferation, wound healing, and negative regulation of T-cell activation showed a significant dysregulation in the chronic versus acute comparison. Furthermore, our data show progressive changes in vasculature and maturation of dendritic-cell subsets with chronicity, with FOXK1 acting as immune regulator. CONCLUSIONS: Our results show that the changes accompanying the transition from nonlesional to acute to chronic inflammation in AD are quantitative rather than qualitative, with chronic AD having heightened TH2, TH1, TH17, and IL36 responses and skin barrier repair mechanisms. These findings provide novel insights and highlight underappreciated pathways in AD pathogenesis that may be amenable to therapeutic targeting.


Assuntos
Citocinas/genética , Dermatite Atópica/genética , Doença Aguda , Doença Crônica , Dermatite Atópica/imunologia , Feminino , Humanos , Masculino , Análise de Sequência de RNA , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Transcriptoma
15.
Sci Transl Med ; 11(511)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554739

RESUMO

Lichen planus (LP) is a chronic debilitating inflammatory disease of unknown etiology affecting the skin, nails, and mucosa with no current FDA-approved treatments. It is histologically characterized by dense infiltration of T cells and epidermal keratinocyte apoptosis. Using global transcriptomic profiling of patient skin samples, we demonstrate that LP is characterized by a type II interferon (IFN) inflammatory response. The type II IFN, IFN-γ, is demonstrated to prime keratinocytes and increase their susceptibility to CD8+ T cell-mediated cytotoxic responses through MHC class I induction in a coculture model. We show that this process is dependent on Janus kinase 2 (JAK2) and signal transducer and activator of transcription 1 (STAT1), but not JAK1 or STAT2 signaling. Last, using drug prediction algorithms, we identify JAK inhibitors as promising therapeutic agents in LP and demonstrate that the JAK1/2 inhibitor baricitinib fully protects keratinocytes against cell-mediated cytotoxic responses in vitro. In summary, this work elucidates the role and mechanisms of IFN-γ in LP pathogenesis and provides evidence for the therapeutic use of JAK inhibitors to limit cell-mediated cytotoxicity in patients with LP.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Interferon gama/farmacologia , Janus Quinase 2/metabolismo , Queratinócitos/imunologia , Líquen Plano/imunologia , Fator de Transcrição STAT1/metabolismo , Apoptose/efeitos dos fármacos , Epiderme/patologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Inflamação/patologia , Queratinócitos/efeitos dos fármacos , Líquen Plano/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
16.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996136

RESUMO

Autoimmune disease is 4 times more common in women than men. This bias is largely unexplained. Female skin is "autoimmunity prone," showing upregulation of many proinflammatory genes, even in healthy women. We previously identified VGLL3 as a putative transcription cofactor enriched in female skin. Here, we demonstrate that skin-directed overexpression of murine VGLL3 causes a severe lupus-like rash and systemic autoimmune disease that involves B cell expansion, autoantibody production, immune complex deposition, and end-organ damage. Excess epidermal VGLL3 drives a proinflammatory gene expression program that overlaps with both female skin and cutaneous lupus. This includes increased B cell-activating factor (BAFF), the only current biologic target in systemic lupus erythematosus (SLE); IFN-κ, a key inflammatory mediator in cutaneous lupus; and CXCL13, a biomarker of early-onset SLE and renal involvement. Our results demonstrate that skin-targeted overexpression of the female-biased factor VGLL3 is sufficient to drive cutaneous and systemic autoimmune disease that is strikingly similar to SLE. This work strongly implicates VGLL3 as a pivotal orchestrator of sex-biased autoimmunity.


Assuntos
Autoimunidade/genética , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fatores Sexuais , Pele/imunologia , Pele/patologia , Fatores de Transcrição/genética
17.
J Immunol ; 202(7): 2121-2130, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745462

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which 70% of patients experience disfiguring skin inflammation (grouped under the rubric of cutaneous lupus erythematosus [CLE]). There are limited treatment options for SLE and no Food and Drug Administration-approved therapies for CLE. Studies have revealed that IFNs are important mediators for SLE and CLE, but the mechanisms by which IFNs lead to disease are still poorly understood. We aimed to investigate how IFN responses in SLE keratinocytes contribute to development of CLE. A cohort of 72 RNA sequencing samples from 14 individuals (seven SLE and seven healthy controls) were analyzed to study the transcriptomic effects of type I and type II IFNs on SLE versus control keratinocytes. In-depth analysis of the IFN responses was conducted. Bioinformatics and functional assays were conducted to provide implications for the change of IFN response. A significant hypersensitive response to IFNs was identified in lupus keratinocytes, including genes (IFIH1, STAT1, and IRF7) encompassed in SLE susceptibility loci. Binding sites for the transcription factor PITX1 were enriched in genes that exhibit IFN-sensitive responses. PITX1 expression was increased in CLE lesions based on immunohistochemistry, and by using small interfering RNA knockdown, we illustrated that PITX1 was required for upregulation of IFN-regulated genes in vitro. SLE patients exhibit increased IFN signatures in their skin secondary to increased production and a robust, skewed IFN response that is regulated by PITX1. Targeting these exaggerated pathways may prove to be beneficial to prevent and treat hyperinflammatory responses in SLE skin.


Assuntos
Regulação da Expressão Gênica/imunologia , Interferons/imunologia , Queratinócitos/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Fatores de Transcrição Box Pareados/imunologia , Adulto , Feminino , Humanos , Masculino
18.
J Invest Dermatol ; 139(7): 1480-1489, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30641038

RESUMO

Atopic dermatitis (AD) affects up to 20% of children and adults worldwide. To gain a deeper understanding of the pathophysiology of AD, we conducted a large-scale transcriptomic study of AD with deeply sequenced RNA-sequencing samples using long (126-bp) paired-end reads. In addition to the comparisons against previous transcriptomic studies, we conducted in-depth analysis to obtain a high-resolution view of the global architecture of the AD transcriptome and contrasted it with that of psoriasis from the same cohort. By using 147 RNA samples in total, we found striking correlation between dysregulated genes in lesional psoriasis and lesional AD skin with 81% of AD dysregulated genes being shared with psoriasis. However, we described disease-specific molecular and cellular features, with AD skin showing dominance of IL-13 pathways, but with near undetectable IL-4 expression. We also demonstrated greater disease heterogeneity and larger proportion of dysregulated long noncoding RNAs in AD, and illustrated the translational impact, including skin-type classification and drug-target prediction. This study is by far the largest study comparing the AD and psoriasis transcriptomes using RNA sequencing and demonstrating the shared inflammatory components, as well as specific discordant cytokine signatures of these two skin diseases.


Assuntos
Dermatite Atópica/imunologia , Interleucina-13/metabolismo , Especificidade de Órgãos/genética , Psoríase/imunologia , RNA/genética , Pele/metabolismo , Células Th2/imunologia , Estudos de Coortes , Dermatite Atópica/genética , Perfilação da Expressão Gênica , Humanos , Interleucina-13/genética , Interleucina-4/metabolismo , Psoríase/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Transdução de Sinais , Pele/patologia , Transcriptoma
19.
Ann Rheum Dis ; 77(11): 1653-1664, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30021804

RESUMO

OBJECTIVE: Skin inflammation and photosensitivity are common in patients with cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE), yet little is known about the mechanisms that regulate these traits. Here we investigate the role of interferon kappa (IFN-κ) in regulation of type I interferon (IFN) and photosensitive responses and examine its dysregulation in lupus skin. METHODS: mRNA expression of type I IFN genes was analysed from microarray data of CLE lesions and healthy control skin. Similar expression in cultured primary keratinocytes, fibroblasts and endothelial cells was analysed via RNA-seq. IFNK knock-out (KO) keratinocytes were generated using CRISPR/Cas9. Keratinocytes stably overexpressing IFN-κ were created via G418 selection of transfected cells. IFN responses were assessed via phosphorylation of STAT1 and STAT2 and qRT-PCR for IFN-regulated genes. Ultraviolet B-mediated apoptosis was analysed via TUNEL staining. In vivo protein expression was assessed via immunofluorescent staining of normal and CLE lesional skin. RESULTS: IFNK is one of two type I IFNs significantly increased (1.5-fold change, false discovery rate (FDR) q<0.001) in lesional CLE skin. Gene ontology (GO) analysis showed that type I IFN responses were enriched (FDR=6.8×10-04) in keratinocytes not in fibroblast and endothelial cells, and this epithelial-derived IFN-κ is responsible for maintaining baseline type I IFN responses in healthy skin. Increased levels of IFN-κ, such as seen in SLE, amplify and accelerate responsiveness of epithelia to IFN-α and increase keratinocyte sensitivity to UV irradiation. Notably, KO of IFN-κ or inhibition of IFN signalling with baricitinib abrogates UVB-induced apoptosis. CONCLUSION: Collectively, our data identify IFN-κ as a critical IFN in CLE pathology via promotion of enhanced IFN responses and photosensitivity. IFN-κ is a potential novel target for UVB prophylaxis and CLE-directed therapy.


Assuntos
Epiderme/imunologia , Interferon Tipo I/biossíntese , Lúpus Eritematoso Cutâneo/complicações , Transtornos de Fotossensibilidade/etiologia , Adulto , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Queratinócitos/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Masculino , Pessoa de Meia-Idade , Transtornos de Fotossensibilidade/imunologia , RNA Mensageiro/genética , Pele/imunologia , TYK2 Quinase/imunologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA