Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298163

RESUMO

Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. This review highlights and discusses the role of microbially induced or catalyzed processes that affect the transformation of manganese oxides in the environment as relevant to the function of geochemical barriers.


Assuntos
Manganês , Óxidos , Manganês/química , Óxidos/química , Minerais/química , Compostos de Manganês/química , Oxirredução , Meio Ambiente
2.
Microorganisms ; 11(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374987

RESUMO

The use of pesticides in agricultural practices raises concerns considering the toxic effects they generate in the environment; thus, their sustainable application in crop production remains a challenge. One of the frequently addressed issues regarding their application includes the development of a sustainable and ecofriendly approach for their degradation. Since the filamentous fungi can bioremediate various xenobiotics owing to their efficient and versatile enzymatic machinery, this review has addressed their performance in the biodegradation of organochlorine and organophosphorus pesticides. It is focused particularly on fungal strains belonging to the genera Aspergillus and Penicillium, since both are ubiquitous in the environment, and often abundant in soils contaminated with xenobiotics. Most of the recent reviews on microbial biodegradation of pesticides focus primarily on bacteria, and the soil filamentous fungi are mentioned only marginally there. Therefore, in this review, we have attempted to demonstrate and highlight the exceptional potential of aspergilli and penicillia in degrading the organochlorine and organophosphorus pesticides (e.g., endosulfan, lindane, chlorpyrifos, and methyl parathion). These biologically active xenobiotics have been degraded by fungi into various metabolites efficaciously, or these are completely mineralized within a few days. Since they have demonstrated high rates of degradation activity, as well as high tolerance to pesticides, most of the Aspergillus and Penicillium species strains listed in this review are excellent candidates for the remediation of pesticide-contaminated soils.

3.
Int J Biol Macromol ; 242(Pt 1): 124599, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116835

RESUMO

Two different biocleaning techniques for stamp removal from different paper samples (handmade and machine-made) were investigated. Cellulose is the main component of handmade paper, while higher concentration of lignin is present in machine-made paper. Biocleaning methods included the direct application on paper surfaces of the extracellular enzymatic mixture (EEM) extracted from the yeast Sporidiobolus metaroseus and the recombinant protein CthediskatG of Chaetomium thermophilum var. dissitum. The produced microbial enzymes (EEM or CthediskatG) were also combined with agarose hydrogels. The effectiveness of the cleaning ability of the individual methods was determined using different spectrophotometer measurements based on colorimetric analysis and by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Some tested samples were also subjected to microstructural and chemical analysis using Scanning Electron Microscope-Energy-Dispersive X-ray spectroscopy (SEM-EDX). The analysis showed that the EEM-based approaches were the most suitable, mainly they are less time-consuming and easy to produce, and moreover slight differences were displayed between EEM and CthediskatG during the removal of the stamp by hydrogel-enzyme approaches. Both EEM applications (direct and hydrogel) speed up the stamp removal process from real paper samples. However, for the complete elimination of the stamp smears a quick N,N-dimethylformamide post-treatment is advised too.


Assuntos
Celulose , Lignina , Celulose/química , Lignina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrometria por Raios X , Hidrogéis
4.
Water Res ; 229: 119429, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459891

RESUMO

Colloidal particles can attach to surfaces during transport, but the attachment depends on particle size, hydrodynamics, solid and water chemistry, and particulate matter. The attachment is quantified in filtration theory by measuring attachment or sticking efficiency (Alpha). A comprehensive Alpha database (2538 records) was built from experiments in the literature and used to develop a machine learning (ML) model to predict Alpha. The training (r-squared: 0.86) was performed using two random forests capable of handling missing data. A holdout dataset was used to validate the training (r-squared: 0.98), and the variable importance was explored for training and validation. Finally, an additional validation dataset was built from quartz crystal microbalance experiments using surface-modified polystyrene, poly (methyl methacrylate), and polyethylene. The experiments were performed in the absence or presence of humic acid. Full database regression (r-squared: 0.90) predicted Alpha for the additional validation with an r-squared of 0.23. Nevertheless, when the original database and the additional validation dataset were combined into a new database, both the training (r-squared: 0.95) and validation (r-squared: 0.70) increased. The developed ML model provides a data-driven prediction of Alpha over a big database and evaluates the significance of 22 input variables.


Assuntos
Aprendizado de Máquina , Material Particulado , Tamanho da Partícula , Bases de Dados Factuais , Técnicas de Microbalança de Cristal de Quartzo
5.
Polymers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501719

RESUMO

Biosorption is considered an effective technique for the treatment of heavy-metal-bearing wastewaters. In recent years, various biogenic products, including native and functionalized biopolymers, have been successfully employed in technologies aiming for the environmentally sustainable immobilization and removal of heavy metals at contaminated sites, including two commercially available heteropolysaccharides-xanthan and gellan. As biodegradable and non-toxic fermentation products, xanthan and gellan have been successfully tested in various remediation techniques. Here, to highlight their prospects as green adsorbents for water decontamination, we have reviewed their biosynthesis machinery and chemical properties that are linked to their sorptive interactions, as well as their actual performance in the remediation of heavy metal contaminated waters. Their sorptive performance in native and modified forms is promising; thus, both xanthan and gellan are emerging as new green-based materials for the cost-effective and efficient remediation of heavy metal-contaminated waters.

6.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430561

RESUMO

In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.


Assuntos
Nanopartículas Metálicas , Substâncias Redutoras , Bioacumulação , Catálise , Transporte Biológico
7.
Nutrients ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432402

RESUMO

Selenium and iodine are essential trace elements for both humans and animals. Among other things, they have an essential role in thyroid function and the production of important hormones by the thyroid gland. Unfortunately, in many areas, soils are deficient in selenium and iodine, and their amount is insufficient to produce crops with adequate contents to cover the recommended daily intake; thus, deficiencies have an endemic character. With the introduction of iodized table salt in the food industry, the thyroid status of the population has improved, but several areas remain iodine deficient. Furthermore, due to the strong relationship between iodine and selenium in metabolic processes, selenium deficiency often compromises the desired positive impact of salt iodization efforts. Therefore, a considerable number of studies have looked for alternative methods for the simultaneous supplementation of selenium and iodine in foodstuff. In most cases, the subject of these studies is crops; recently, meat has also been a subject of interest. This paper reviews the most recent strategies in agriculture to fortify selenium and iodine in crop plants, their effect on the quality of the plant species used, and the potential impact of food processing on their stability in fortified crops.


Assuntos
Iodo , Selênio , Humanos , Animais , Biofortificação , Iodetos , Produtos Agrícolas
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232767

RESUMO

The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004-200 ng L-1 and 8-250, respectively.


Assuntos
Ouro , Nanopartículas Metálicas , Solventes , Tensoativos , Águas Residuárias
9.
Polymers (Basel) ; 14(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297831

RESUMO

Pseudomonas biofilms have been studied intensively for several decades and research outcomes have been successfully implemented in various medical and agricultural applications. Research on biofilm synthesis and composition has also overlapped with the objectives of environmental sciences, since biofilm components show exceptional physicochemical properties applicable to remediation techniques. Especially, exopolysaccharides (ExPs) have been at the center of scientific interest, indicating their potential in solving the environmental issues of heavy metal land and water contamination via sorptive interactions and flocculation. Since exposure to heavy metal via contaminated water or soil poses an imminent risk to the environment and human health, ExPs provide an interesting and viable solution to this issue, alongside other effective and green remedial techniques (e.g., phytostabilization, implementation of biosolids, and biosorption using agricultural wastes) aiming to restore contaminated sites to their natural, pollution-free state, or to ameliorate the negative impact of heavy metals on the environment. Thus, we discuss the plausible role and performance of Pseudomonas ExPs in remediation techniques, aiming to provide the relevant available and comprehensive information on ExPs' biosynthesis and their usage in heavy metal remediation or other environmental applications, such as wastewater treatment via bioflocculation and soil remediation.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159655

RESUMO

Nanotechnology offers new opportunities for the development of novel materials and strategies that improve technology and industry. This applies especially to agriculture, and our previous field studies have indicated that zinc oxide nanoparticles provide promising nano-fertilizer dispersion in sustainable agriculture. However, little is known about the precise ZnO-NP effects on legumes. Herein, 1 mg·L-1 ZnO-NP spray was dispersed on lentil plants to establish the direct NP effects on lentil production, seed nutritional quality, and stress response under field conditions. Although ZnO-NP exposure positively affected yield, thousand-seed weight and the number of pods per plant, there was no statistically significant difference in nutrient and anti-nutrient content in treated and untreated plant seeds. In contrast, the lentil water stress level was affected, and the stress response resulted in statistically significant changes in stomatal conductance, crop water stress index, and plant temperature. Foliar application of low ZnO-NP concentrations therefore proved promising in increasing crop production under field conditions, and this confirms ZnO-NP use as a viable strategy for sustainable agriculture.

11.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613746

RESUMO

Fungi contain species with a plethora of ways of adapting to life in nature. Consequently, they produce large amounts of diverse biomolecules that can be generated on a large scale and in an affordable manner. This makes fungi an attractive alternative for many biotechnological processes. Ascomycetes and basidiomycetes are the most commonly used fungi for synthesis of metal-containing nanoparticles (NPs). The advantages of NPs created by fungi include the use of non-toxic fungus-produced biochemicals, energy efficiency, ambient temperature, pressure conditions, and the ability to control and tune the crystallinity, shape, and size of the NPs. Furthermore, the presence of biomolecules might serve a dual function as agents in NP formation and also capping that can tailor the (bio)activity of subsequent NPs. This review summarizes and reviews the synthesis of different metal, metal oxide, metal sulfide, and other metal-based NPs mediated by reactive media derived from various species. The phyla ascomycetes and basidiomycetes are presented separately. Moreover, the practical application of NP mycosynthesis, particularly in the fields of biomedicine, catalysis, biosensing, mosquito control, and precision agriculture as nanofertilizers and nanopesticides, has been studied so far. Finally, an outlook is provided, and future recommendations are proposed with an emphasis on the areas where mycosynthesized NPs have greater potential than NPs synthesized using physicochemical approaches. A deeper investigation of the mechanisms of NP formation in fungi-based media is needed, as is a focus on the transfer of NP mycosynthesis from the laboratory to large-scale production and application.


Assuntos
Ascomicetos , Basidiomycota , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Metais , Óxidos
12.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613759

RESUMO

Selenium can be highly toxic in excess for both animals and humans. However, since its mobile forms can be easily adsorbed with ferric minerals, its mobility in the natural oxic environment is generally not an issue. Still, the removal and immobilization of the long-lived radioactive isotope 79Se from the contaminated anoxic waters is currently a significant concern. 79Se can be accessible in the case of radionuclides' leaching from radioactive waste disposals, where anoxic conditions prevail and where ferrous ions and Fe(II)-bearing minerals predominate after corrosion processes (e.g., magnetite). Therefore, reductive and adsorptive immobilizations by Fe(II)-bearing minerals are the primary mechanisms for removing redox-sensitive selenium. Even though the information on the sorptive interactions of selenium and Fe(II)-bearing minerals seems to be well documented, this review focuses specifically on the state of the available information on the effects of the redox properties of Fe(II)-bearing solid phases (e.g., ferrous oxides, hydroxides, sulfides, and carbonates) on selenium speciation via redox transformation and co-occurring coprecipitation.


Assuntos
Resíduos Radioativos , Selênio , Humanos , Água , Compostos Férricos , Minerais , Ferro , Compostos Ferrosos , Oxirredução
13.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34682230

RESUMO

This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·Mn2O3, Mn2O3 and MnO2) by a strain of the filamentous fungus Aspergillus niger, a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides' biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.

14.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34682232

RESUMO

Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.

15.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576122

RESUMO

Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations. Since the association of selenium with precipitates surfaces has been proven to be weak, the mineralogy of the system was affected insignificantly, and the goethite was identified as an only ferric phase in all treatments. However, the morphology and the crystallinity of ferric oxyhydroxides was slightly altered. Selenium affected the structural order of precipitates, especially at the initial phase of co-precipitation. Still, the crystal integrity and homogeneity increased with time almost constantly, regardless of the treatment. The thermal transformation into well crystalized hematite was more pronounced in the presence of selenite, while selenate-treated and selenium-free samples indicated the presence of highly disordered fraction. This highlights that the aftermath of selenium release does not result in destabilization of ferric phases; however, since weak interactions of selenium are dominant at alkaline conditions with goethite's surfaces, it still poses a high risk for the environment. The findings of this study should be applicable in waters affected by mining and metallurgical operations.


Assuntos
Álcalis/química , Compostos Férricos/química , Ácido Selênico/química , Ácido Selenioso/química , Precipitação Química , Cristalização , Ferro/química , Compostos de Ferro/química , Minerais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Temperatura
16.
J Hazard Mater ; 409: 124938, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33450513

RESUMO

Natural ferric ochres that precipitate in streambeds at abandoned mining sites are natural scavengers of various metals and metalloids. Thus, their chemical and structural modification via microbial activity should be considered in evaluation of the risks emerging from probable spread of contamination at mining sites. Our results highlight the role of various aspergilli strains in this process via production of acidic metabolites that affect mobility and bioavailability of coprecipitated contaminants. The Mössbauer analysis revealed subtle structural changes of iron in ochres, while the elemental analysis of non-dissolved residues of ochres that were exposed to filamentous fungi suggest coinciding bioextraction of arsenic and antimony with extensive iron mobilisation. However, the zinc bioextraction by filamentous fungi is less likely dependent on iron leaching from ferric ochres. The strain specific bioextraction efficiency and subsequent bioaccumulation of mobilised metals resulted in distinct tolerance responses among the studied soil fungal strains. However, regardless the burden of bioextracted metal(loid)s on its activity, the Aspergillus niger strain has shown remarkable capability to decrease pH of its environment and, thus, bioextract significant and environmentally relevant amounts of potentially toxic elements from the natural ochres.


Assuntos
Arsênio , Metaloides , Metais Pesados , Poluentes do Solo , Antimônio , Arsênio/análise , Aspergillus , Metaloides/análise , Metais Pesados/análise , Mineração , Poluentes do Solo/análise
17.
Front Microbiol ; 12: 804081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003036

RESUMO

Iodine is an essential micronutrient for most of the living beings, including humans. Besides its indispensable role in animals, it also plays an important role in the environment. It undergoes several chemical and biological transformations resulting in the production of volatile methylated iodides, which play a key role in the iodine's global geochemical cycle. Since it can also mitigate the process of climate change, it is reasonable to study its biogeochemistry. Therefore, the aim of this review is to provide information on its origin, global fluxes and mechanisms of production in the environment.

18.
Chemosphere ; 269: 128733, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33131728

RESUMO

Iron-containing spontaneously precipitated ochreous sediments serve as natural scavengers of various migrating elements and in this way contribute to removal and immobilization of potentially hazardous elements especially from mine drainage outflows. On the other hand, presence of filamentous fungi in their surroundings triggers biotransformation and contributes to the mobility of these elements. Three groups of samples of spontaneously precipitated ochreous sediments from an abandoned antimony mine in Poproc, Slovakia were studied: as-collected, sterilized at 95 °C for 30 min, and exposed to incubation with filamentous fungus Aspergillus niger which is frequently found in soils. Employing chemical analyses have determined the content of Fe, As, Sb, and Zn in the samples as well as their mobilization among the non-dissolved residue, culture medium of the fungus and/or its biomass. Significant degree of biovolatilization of antimony was unveiled. Speciation of iron was performed by 57Fe Mössbauer spectroscopy performed in a wide temperature range 300-4.2 K and external magnetic field of 6 T. Hyperfine interactions between 57Fe nuclei and their electronic shells have revealed superparamagnetic behavior characteristic for small particles. Their blocking temperatures of 46, 53, and 40 K, respectively, indicate a dependence of the size of the particles upon the sample treatment. While sterilization has supported their growth, incubation with fungus has changed their chemical environment and removed mainly bigger particles.


Assuntos
Antimônio , Poluentes do Solo , Antimônio/análise , Fungos , Ferro , Eslováquia , Poluentes do Solo/análise
19.
J Fungi (Basel) ; 6(4)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182297

RESUMO

The aim of this work was to evaluate the transformation of manganese oxide (hausmannite) by microscopic filamentous fungus Aspergillus niger and the effects of the transformation on mobility and bioavailability of arsenic. Our results showed that the A. niger strain CBS 140837 greatly affected the stability of hausmannite and induced its transformation into biogenic crystals of manganese oxalates-falottaite and lindbergite. The transformation was enabled by fungal acidolysis of hausmannite and subsequent release of manganese ions into the culture medium. While almost 45% of manganese was bioextracted, the arsenic content in manganese precipitates increased throughout the 25-day static cultivation of fungus. This significantly decreased the bioavailability of arsenic for the fungus. These results highlight the unique A. niger strain's ability to act as an active geochemical factor via its ability to acidify its environment and to induce formation of biogenic minerals. This affects not only the manganese speciation, but also bioaccumulation of potentially toxic metals and metalloids associated with manganese oxides, including arsenic.

20.
Plants (Basel) ; 9(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076236

RESUMO

Zinc is among the most in-demand metals in the world which also means that a considerable amount of this element is released to the environment each year as a result of human activities. A pot experiment was conducted to study the impact of low- and high-dose zinc amendments on plant growth and biomass yield, with Calcic Chernozem as a growing medium and barley (Hordeum vulgare L.) as a model plant. The distribution of zinc in various plant parts was also investigated. Zn (II) was added in powder as bulk ZnO and in solution as ZnO nanoparticles and ZnSO4 in two dosages (3 and 30 mmol kg-1 soil) prior to planting. The plants were harvested after 10 days of growth. The three sets of data were taken under identical experimental conditions. The application of zinc in aqueous solution and in particulate form (having particle sizes in the range of <100 nm to >500 nm) at concentration of 3 and 30 mmol Zn kg-1 to the soil resulted in decreased growth (root length, shoot length) and biomass yield; the only exception was the addition of 30 mmol Zn kg-1 in the form of bulk ZnO, which had a positive effect on the root growth. The dry weight reduction (sprout biomass) was lowest in plants grown in soil treated with dissolved zinc. There were no statistically significant changes in the content of chlorophyll a, chlorophyll b, and total chlorophyll, although flame atomic absorption spectrometry (FAAS) analysis indicated that plants bioaccumulated the zinc applied. This implies that the transport of zinc into the above-ground plant parts is controlled by the presence of effective mechanical and physiological barriers in roots. Crop performance under zinc stress in relation to biomass production and the growth of roots and shoots is also partly a reflection of the effects of soil properties. Our findings emphasize the importance of considering plant-soil interactions in research of potential toxicity and bioavailability of zinc in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA