Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 17(1): 178-198, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102832

RESUMO

Nitric oxide (NO) is an essential reactive oxygen species and a signal molecule in plants. Although several studies have proposed the occurrence of oxidative NO production, only reductive routes for NO production, such as the nitrate (NO-3) -upper-reductase pathway, have been evidenced to date in land plants. However, plants grown axenically with ammonium as the sole source of nitrogen exhibit contents of nitrite and NO3-, evidencing the existence of a metabolic pathway for oxidative production of NO. We hypothesized that oximes, such as indole-3-acetaldoxime (IAOx), a precursor to indole-3-acetic acid, are intermediate oxidation products in NO synthesis. We detected the production of NO from IAOx and other oximes catalyzed by peroxidase (POD) enzyme using both 4-amino-5-methylamino-2',7'-difluorescein fluorescence and chemiluminescence. Flavins stimulated the reaction, while superoxide dismutase inhibited it. Interestingly, mouse NO synthase can also use IAOx to produce NO at a lower rate than POD. We provided a full mechanism for POD-dependent NO production from IAOx consistent with the experimental data and supported by density functional theory calculations. We showed that the addition of IAOx to extracts from Medicago truncatula increased the in vitro production of NO, while in vivo supplementation of IAOx and other oximes increased the number of lateral roots, as shown for NO donors, and a more than 10-fold increase in IAOx dehydratase expression. Furthermore, we found that in vivo supplementation of IAOx increased NO production in Arabidopsis thaliana wild-type plants, while prx33-34 mutant plants, defective in POD33-34, had reduced production. Our data show that the release of NO by IAOx, as well as its auxinic effect, explain the superroot phenotype. Collectively, our study reveals that plants produce NO utilizing diverse molecules such as oximes, POD, and flavins, which are widely distributed in the plant kingdom, thus introducing a long-awaited oxidative pathway to NO production in plants. This knowledge has essential implications for understanding signaling in biological systems.


Assuntos
Arabidopsis , Óxido Nítrico , Animais , Camundongos , Óxido Nítrico/metabolismo , Arabidopsis/metabolismo , Oximas/farmacologia , Oximas/metabolismo , Flavinas/metabolismo , Estresse Oxidativo
2.
Front Plant Sci ; 7: 140, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909089

RESUMO

We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen, with respect to nitrate-based nutrition. Biomass measurements, auxin content analyses, root system architecture (RSA) response analyses, and physiological parameters were determined. Both ammonium and ureic nutrition severely affected the RSA, resulting in changes in the main elongation rate, lateral root development, and insert position from the root base. The auxin content decreased in both urea- and ammonium-treated roots; however, only the ammonium-treated plants were affected at the shoot level. The analysis of chlorophyll a fluorescence transients showed that ammonium affected photosystem II, but urea did not impair photosynthetic activity. Superoxide dismutase isoenzymes in the plastids were moderately affected by urea and ammonium in the roots. Overall, our results showed that low N doses from different sources had no remarkable effects on M. truncatula, with the exception of the differential phenotypic root response. High doses of both ammonium and urea caused great changes in plant length, auxin contents and physiological measurements. Interesting correlations were found between the shoot auxin pool and both plant length and the "performance index" parameter, which is obtained from measurements of the kinetics of chlorophyll a fluorescence. Taken together, these data demonstrate that both the indole-3-acetic acid pool and performance index are important components of the response of M. truncatula under ammonium or urea as the sole N source.

3.
Plant Physiol Biochem ; 83: 356-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25221924

RESUMO

Nitric oxide cytotoxicity arises from its rapid conversion to peroxynitrite (ONOO(-)) in the presence of superoxide, provoking functional changes in proteins by nitration of tyrosine residues. The physiological significance of this post-translational modification is associated to tissue injury in animals, but has not been yet clarified in plants. The objective of this study was to establish new approaches that could help to understand ONOO(-) reactivity in plants. A recombinant Fe-superoxide dismutase from cowpea (Vigna unguiculata (L.) Walp.), rVuFeSOD, was the target of the ONOO(-)-generator SIN-1, and the anti-nitrative effect of plant antioxidants and haemoglobins was tested in vitro. Nitration on rVuFeSOD was evaluated immunochemically or as the loss of its enzymatic activity. This assay proved to be useful to test a variety of plant compounds for anti-nitrative capacity. Experimental data confirmed that rice (Oryza sativa L.) haemoglobin-1 (rOsHbI) and cowpea leghaemoglobin-2 exerted a protective function against ONOO(-) by diminishing nitration on rVuFeSOD. Both plant haemoglobins were nitrated by SIN-1. The chelator desferrioxamine suppressed nitration in rOsHbI, indicating that Fe plays a key role in the reaction. The removal of the haem moiety in rOsHbI importantly suppressed nitration, evidencing that this reaction may be self-catalyzed. Among small antioxidants, ascorbate remarkably decreased nitration in all tests. The phenolic compounds caffeic acid, gallic acid, pyrogallol, 4-hydroxybenzoic acid and the flavonoid gossypin also diminished tyrosine nitration and protected rVuFeSOD to different extents. It is concluded that small plant antioxidants, especially ascorbate, and haemoglobins may well play key roles in ONOO(-) homeostasis in vivo.


Assuntos
Antioxidantes/química , Fabaceae/enzimologia , Ácido Peroxinitroso/química , Proteínas de Plantas/química , Superóxido Dismutase/química , Proteínas Recombinantes/química
4.
Methods Enzymol ; 437: 605-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18433650

RESUMO

Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO(-)) which can be originated from the reaction of nitric oxide with superoxide radical. ONOO(-) is a strong oxidant molecule capable of nitrating peptides and proteins at the phenyl side chain of the tyrosine residues. In the present work, bovine serum albumin (BSA) and recombinant iron-superoxide dismutase from the plant cowpea (Vu_FeSOD) are used as target molecules to estimate ONOO(-) production. The method employs the compound SIN-1, which simultaneously generates *NO and O(2)(-) in aerobic aqueous solutions. First, assay conditions were optimized incubating BSA with different concentrations of SIN-1, and at a later stage, the effect on the tyrosine nitration and catalytic activity of Vu_FeSOD was examined by in-gel activity and spectrophotometric assays. Both BSA and Vu_FeSOD are nitrated in a dose-dependent manner, and, at least in BSA nitration, the reaction seems to be metal catalyzed.


Assuntos
Estresse Oxidativo , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Anticorpos/farmacologia , Biomarcadores/análise , Biomarcadores/metabolismo , Ativação Enzimática/efeitos dos fármacos , Imuno-Histoquímica/métodos , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Nitrocompostos/análise , Nitrocompostos/metabolismo , Nitrosação , Proteínas Recombinantes/análise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Soroalbumina Bovina/metabolismo , Tirosina/análogos & derivados , Tirosina/análise , Tirosina/imunologia , Tirosina/metabolismo
5.
Methods Enzymol ; 436: 411-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18237646

RESUMO

Ferric leghemoglobin reductase (FLbR) is able to reduce ferric leghemoglobin (Lb3+) to ferrous (Lb2+) form. This reaction makes Lb functional in performing its role since only reduced hemoglobins bind O2. FLbR contains FAD as prosthetic group to perform its activity. FLbR-1 and FLbR-2 were isolated from soybean root nodules and it has been postulated that they reduce Lb3+. The existence of Lb2+ is essential for the nitrogen fixation process that occurs in legume nodules; thus, the isolation of FLbR for the study of this enzyme in the nodule physiology is of interest. However, previous methods for the production of recombinant FLbR are inefficient as yields are too low. We describe the production of a recombinant FLbR-2 from Escherichia coli BL21(DE3) by using an overexpression method based on the self-induction of the recombinant E. coli. This expression system is four times more efficient than the previous overexpression method. The quality of recombinant FLbR-2 (based on spectroscopy, SDS-PAGE, IEF, and native PAGE) is comparable to that of the previous expression system. Also, FLbR-2 is purified near to homogeneity in only few steps (in a time scale, the full process takes 3 days). The purification method involves affinity chromatography using a Ni-nitrilotriacetic acid column. Resulting rFLbR-2 showed an intense yellow color, and spectral characterization of rFLbR-2 indicated that rFLbR-2 contains flavin. Pure rFLbR-2 was incubated with soybean Lba and NADH, and time drive rates showed that rFLbR-2 efficiently reduces Lb3+.


Assuntos
NADH NADPH Oxirredutases/biossíntese , Proteínas de Soja/biossíntese , Biotecnologia , Meios de Cultura , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Genes de Plantas , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas de Soja/genética , Proteínas de Soja/isolamento & purificação , Glycine max/enzimologia , Glycine max/genética , Espectrofotometria , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA