Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669615

RESUMO

BACKGROUND AND OBJECTIVES: The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS: We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS: This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION: These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).


Assuntos
Biomarcadores , Esclerose Múltipla Recidivante-Remitente , Sindecana-1 , Humanos , Biomarcadores/líquido cefalorraquidiano , Adulto , Feminino , Masculino , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Pessoa de Meia-Idade , Sindecana-1/líquido cefalorraquidiano , Estudos de Coortes , Proteômica , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Oligodendroglia/metabolismo
2.
EMBO Rep ; 24(12): e57585, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965896

RESUMO

Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.


Assuntos
Replicação do DNA , Proteínas de Ligação ao GTP , Humanos , Proteínas de Ligação ao GTP/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dano ao DNA , DNA
3.
Sci Adv ; 9(37): eadi7838, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703372

RESUMO

Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively. We show that TMCP1 (also known as MATCAP) acts as α-tubulin detyrosinase that also catalyzes α∆2-tubulin. In contrast, TMCP2 preferentially modifies ßI-tubulin by removing three amino acids from its C terminus, generating previously unknown ßI∆3 modification. We show that ßI∆3-tubulin is mostly found on centrioles and mitotic spindles and in cilia. Moreover, we demonstrate that TMCPs also remove posttranslational polyglutamylation and thus act as tubulin deglutamylases. Together, our study describes the identification and comprehensive biochemical analysis of a previously unknown type of tubulin-modifying enzymes involved in the processing of α- and ß-tubulin C-terminal tails and deglutamylation.


Assuntos
Carboxipeptidases , Tubulina (Proteína) , Microtúbulos , Aminoácidos , Centríolos
4.
Mol Cell ; 83(10): 1640-1658.e9, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37059091

RESUMO

SLX4, disabled in the Fanconi anemia group P, is a scaffolding protein that coordinates the action of structure-specific endonucleases and other proteins involved in the replication-coupled repair of DNA interstrand cross-links. Here, we show that SLX4 dimerization and SUMO-SIM interactions drive the assembly of SLX4 membraneless compartments in the nucleus called condensates. Super-resolution microscopy reveals that SLX4 forms chromatin-bound clusters of nanocondensates. We report that SLX4 compartmentalizes the SUMO-RNF4 signaling pathway. SENP6 and RNF4 regulate the assembly and disassembly of SLX4 condensates, respectively. SLX4 condensation per se triggers the selective modification of proteins by SUMO and ubiquitin. Specifically, SLX4 condensation induces ubiquitylation and chromatin extraction of topoisomerase 1 DNA-protein cross-links. SLX4 condensation also induces the nucleolytic degradation of newly replicated DNA. We propose that the compartmentalization of proteins by SLX4 through site-specific interactions ensures the spatiotemporal control of protein modifications and nucleolytic reactions during DNA repair.


Assuntos
Reparo do DNA , Ubiquitina , Ubiquitinação , Ubiquitina/metabolismo , DNA/metabolismo , Cromatina
5.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746532

RESUMO

Eukaryotic genomes are duplicated from thousands of replication origins that fire sequentially forming a defined spatiotemporal pattern of replication clusters. The temporal order of DNA replication is determined by chromatin architecture and, more specifically, by chromatin contacts that are stabilized by RIF1. Here, we show that RIF1 localizes near newly synthesized DNA. In cells exposed to the DNA replication inhibitor aphidicolin, suppression of RIF1 markedly decreased the efficacy of isolation of proteins on nascent DNA, suggesting that the isolation of proteins on nascent DNA procedure is biased by chromatin topology. RIF1 was required to limit the accumulation of DNA lesions induced by aphidicolin treatment and promoted the recruitment of cohesins in the vicinity of nascent DNA. Collectively, the data suggest that the stabilization of chromatin topology by RIF1 limits replication-associated genomic instability.


Assuntos
Cromatina , Proteínas de Ligação a Telômeros , Cromatina/genética , Afidicolina/farmacologia , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , DNA/metabolismo , Replicação do DNA/genética
6.
EMBO J ; 41(22): e111158, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36245278

RESUMO

Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.


Assuntos
Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Exocitose , Proteínas de Membrana/metabolismo , Interações Hospedeiro-Parasita
7.
Sci Adv ; 8(35): eabo7761, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054364

RESUMO

Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with ß-arrestin1. It reveals an atypical position of ß-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/ß-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the ß-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes.

8.
Nat Genet ; 54(8): 1090-1102, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879413

RESUMO

CRISPR knockout (KO) screens have identified host factors regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Here, we conducted a meta-analysis of these screens, which showed a high level of cell-type specificity of the identified hits, highlighting the necessity of additional models to uncover the full landscape of host factors. Thus, we performed genome-wide KO and activation screens in Calu-3 lung cells and KO screens in Caco-2 colorectal cells, followed by secondary screens in four human cell lines. This revealed host-dependency factors, including AP1G1 adaptin and ATP8B1 flippase, as well as inhibitors, including mucins. Interestingly, some of the identified genes also modulate Middle East respiratory syndrome coronavirus (MERS-CoV) and seasonal human coronavirus (HCoV) (HCoV-NL63 and HCoV-229E) replication. Moreover, most genes had an impact on viral entry, with AP1G1 likely regulating TMPRSS2 activity at the plasma membrane. These results demonstrate the value of multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential targets for therapeutic interventions.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , COVID-19/genética , Células CACO-2 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Estações do Ano
9.
Elife ; 112022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642785

RESUMO

Cancer stem cells (CSCs) alone can initiate and maintain tumors, but the function of non-cancer stem cells (non-CSCs) that form the tumor bulk remains poorly understood. Proteomic analysis showed a higher abundance of the extracellular matrix small leucine-rich proteoglycan fibromodulin (FMOD) in the conditioned medium of differentiated glioma cells (DGCs), the equivalent of glioma non-CSCs, compared to that of glioma stem-like cells (GSCs). DGCs silenced for FMOD fail to cooperate with co-implanted GSCs to promote tumor growth. FMOD downregulation neither affects GSC growth and differentiation nor DGC growth and reprogramming in vitro. DGC-secreted FMOD promotes angiogenesis by activating integrin-dependent Notch signaling in endothelial cells. Furthermore, conditional silencing of FMOD in newly generated DGCs in vivo inhibits the growth of GSC-initiated tumors due to poorly developed vasculature and increases mouse survival. Collectively, these findings demonstrate that DGC-secreted FMOD promotes glioma tumor angiogenesis and growth through paracrine signaling in endothelial cells and identifies a DGC-produced protein as a potential therapeutic target in glioma.


Assuntos
Células Endoteliais , Glioma , Animais , Células Endoteliais/metabolismo , Fibromodulina/metabolismo , Glioma/patologia , Integrinas/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/metabolismo , Proteômica
10.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944965

RESUMO

The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.

11.
Front Cell Dev Biol ; 9: 778887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869381

RESUMO

Osteoclasts are bone resorbing cells that participate in the maintenance of bone health. Pathological increase in osteoclast activity causes bone loss, eventually resulting in osteoporosis. Actin cytoskeleton of osteoclasts organizes into a belt of podosomes, which sustains the bone resorption apparatus and is maintained by microtubules. Better understanding of the molecular mechanisms regulating osteoclast cytoskeleton is key to understand the mechanisms of bone resorption, in particular to propose new strategies against osteoporosis. We reported recently that ß-tubulin isotype TUBB6 is key for cytoskeleton organization in osteoclasts and for bone resorption. Here, using an osteoclast model CRISPR/Cas9 KO for Tubb6, we show that TUBB6 controls both microtubule and actin dynamics in osteoclasts. Osteoclasts KO for Tubb6 have reduced microtubule growth speed with longer growth life time, higher levels of acetylation, and smaller EB1-caps. On the other hand, lack of TUBB6 increases podosome life time while the belt of podosomes is destabilized. Finally, we performed proteomic analyses of osteoclast microtubule-associated protein enriched fractions. This highlighted ARHGAP10 as a new microtubule-associated protein, which binding to microtubules appears to be negatively regulated by TUBB6. ARHGAP10 is a negative regulator of CDC42 activity, which participates in actin organization in osteoclasts. Our results suggest that TUBB6 plays a key role in the control of microtubule and actin cytoskeleton dynamics in osteoclasts. Moreover, by controlling ARHGAP10 association with microtubules, TUBB6 may participate in the local control of CDC42 activity to ensure efficient bone resorption.

12.
Front Immunol ; 12: 745315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671358

RESUMO

Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.


Assuntos
Cabras/imunologia , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Virulência/imunologia , Animais , Perfilação da Expressão Gênica , Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Proteômica
13.
Nat Commun ; 12(1): 5463, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526502

RESUMO

The p53 isoform, Δ133p53ß, is critical in promoting cancer. Here we report that Δ133p53ß activity is regulated through an aggregation-dependent mechanism. Δ133p53ß aggregates were observed in cancer cells and tumour biopsies. The Δ133p53ß aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53ß aggregates and loss of Δ133p53ß dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53ß from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Agregação Patológica de Proteínas , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Camundongos , Modelos Moleculares , Mutação , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Agregados Proteicos , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Desdobramento de Proteína , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
14.
Mol Ecol ; 30(18): 4567-4583, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245612

RESUMO

There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.


Assuntos
Polydnaviridae , Vespas , Animais , Herbivoria , Interações Hospedeiro-Parasita , Larva , Proteômica
15.
Front Plant Sci ; 12: 644810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135919

RESUMO

Fusarium head blight (FHB), mainly occurring upon Fusarium graminearum infection in a wide variety of small-grain cereals, is supposed to be controlled by a range of processes diverted by the fungal pathogen, the so-called susceptibility factors. As a mean to provide relevant information about the molecular events involved in FHB susceptibility in bread wheat, we studied an extensive proteome of more than 7,900 identified wheat proteins in three cultivars of contrasting susceptibilities during their interaction with three F. graminearum strains of different aggressiveness. No cultivar-specific proteins discriminated the three wheat genotypes, demonstrating the establishment of a core proteome regardless of unequivocal FHB susceptibility differences. Quantitative protein analysis revealed that most of the FHB-induced molecular adjustments were shared by wheat cultivars and occurred independently of the F. graminearum strain aggressiveness. Although subtle abundance changes evidenced genotype-dependent responses to FHB, cultivar distinction was found to be mainly due to basal abundance differences, especially regarding the chloroplast functions. Integrating these data with previous proteome mapping of the three F. graminearum strains facing the three same wheat cultivars, we demonstrated strong correlations between the wheat protein abundance changes and the adjustments of fungal proteins supposed to interfere with host molecular functions. Together, these results provide a resourceful dataset that expands our understanding of the specific molecular events taking place during the wheat-F. graminearum interaction.

16.
iScience ; 24(2): 102075, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33644711

RESUMO

Inheritance of chromatin-bound proteins theoretically plays a role in the epigenetic transmission of cellular phenotypes. Protein segregation during cell division is however poorly understood. We now describe TrIPP (Tracking the Inheritance Patterns of Proteins): a live cell imaging method for tracking maternal proteins during asymmetric cell divisions of budding yeast. Our analysis of the partitioning pattern of a test set of 18 chromatin-associated proteins reveals that abundant and moderately abundant maternal proteins segregate stochastically and symmetrically between the two cells with the exception of Rxt3p, Fpr4p, and Tup1p, which are preferentially retained in the mother. Low abundance proteins also tend to be retained in the mother cell with the exception of Sir2p and the linker histone H1. Our analysis of chromatin protein behavior in single cells reveals potentially general trends such as coupled protein synthesis and decay and a correlation between protein half-lives and cell-cycle duration.

17.
Mol Cell ; 81(6): 1231-1245.e8, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33503405

RESUMO

ATR checkpoint signaling is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator of ATR, self-assembles extensively to yield micrometer-sized condensates. These opto-TopBP1 condensates are functional entities organized in tightly packed clusters of spherical nano-particles. TopBP1 condensates are reversible, occasionally fuse, and co-localize with TopBP1 partner proteins. We provide evidence that TopBP1 condensation is a molecular switch that amplifies ATR activity to phosphorylate checkpoint kinase 1 (Chk1) and slow down replication forks. Single amino acid substitutions of key residues in the intrinsically disordered ATR activation domain disrupt TopBP1 condensation and consequently ATR/Chk1 signaling. In physiologic salt concentration and pH, purified TopBP1 undergoes liquid-liquid phase separation in vitro. We propose that the actuation mechanism of ATR signaling is the assembly of TopBP1 condensates driven by highly regulated multivalent and cooperative interactions.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte , Núcleo Celular , Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Proteínas Nucleares , Transdução de Sinais , Substituição de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem/química , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Sf9 , Spodoptera
18.
Nat Microbiol ; 6(4): 425-434, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33495622

RESUMO

Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion1. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function2. The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals and plants. Here, we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata and Apicomplexa that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defence for free-living unicellular eukaryotes and host cell injection in intracellular parasites.


Assuntos
Alveolados/fisiologia , Organelas/metabolismo , Alveolados/classificação , Alveolados/ultraestrutura , Membrana Celular/metabolismo , Exocitose , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vesículas Secretórias/metabolismo
19.
Cell Microbiol ; 23(4): e13303, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33340385

RESUMO

Guanine-quadruplexes (G4s) are non-canonical DNA structures that can regulate key biological processes such as transcription, replication and telomere maintenance in several organisms including eukaryotes, prokaryotes and viruses. Recent reports have identified the presence of G4s within the AT-rich genome of Plasmodium falciparum, the protozoan parasite causing malaria. In Plasmodium, potential G4-forming sequences (G4FS) are enriched in the telomeric and sub-telomeric regions of the genome where they are associated with telomere maintenance and recombination events within virulence genes. However, there is a little understanding about the biological role of G4s and G4-binding proteins. Here, we provide the first snapshot of G4-interactome in P. falciparum using DNA pull-down assay followed by LC-MS/MS. Interestingly, we identified ~24 potential G4-binding proteins (G4-BP) that bind to a stable G4FS (AP2_G4). Furthermore, we characterised the role of G-strand binding protein 2 (PfGBP2), a putative telomere-binding protein in P. falciparum. We validated the interaction of PfGBP2 with G4 in vitro as well as in vivo. PfGBP2 is expressed throughout the intra-erythrocytic developmental cycle and is essential for the parasites in the presence of G4-stabilising ligand, pyridostatin. Gene knockout studies showed the role of PfGBP2 in the expression of var genes. Taken together, this study suggests that PfGBP2 is a bona fide G4-binding protein, which is likely to be involved in the regulation of G4-related functions in these malarial parasites. In addition, this study sheds light on this understudied G4 biology in P. falciparum.


Assuntos
Quadruplex G , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Plasmodium falciparum/genética , Proteínas de Transporte , Cromatografia Líquida , Humanos , Plasmodium falciparum/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Espectrometria de Massas em Tandem
20.
Elife ; 92020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33047671

RESUMO

Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) at specific genomic locations that correspond to PRDM9-binding sites. The molecular steps occurring from PRDM9 binding to DSB formation are unknown. Using proteomic approaches to find PRDM9 partners, we identified HELLS, a member of the SNF2-like family of chromatin remodelers. Upon functional analyses during mouse male meiosis, we demonstrated that HELLS is required for PRDM9 binding and DSB activity at PRDM9 sites. However, HELLS is not required for DSB activity at PRDM9-independent sites. HELLS is also essential for 5-hydroxymethylcytosine (5hmC) enrichment at PRDM9 sites. Analyses of 5hmC in mice deficient for SPO11, which catalyzes DSB formation, and in PRDM9 methyltransferase deficient mice reveal that 5hmC is triggered at DSB-prone sites upon PRDM9 binding and histone modification, but independent of DSB activity. These findings highlight the complex regulation of the chromatin and epigenetic environments at PRDM9-specified hotspots.


Assuntos
5-Metilcitosina/análogos & derivados , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Histona-Lisina N-Metiltransferase/genética , 5-Metilcitosina/metabolismo , Animais , Sítios de Ligação , Endodesoxirribonucleases/metabolismo , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Recombinação Homóloga , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteômica , Espermatócitos/citologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA