Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 178: 113027, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529861

RESUMO

Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 µL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , DNA Catalítico , Neoplasias Pulmonares , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
2.
Adv Mater ; 31(51): e1905311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31663165

RESUMO

Noncoding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated with many different diseases, such as cancer, dementia, and cardiovascular conditions. The key for effective treatment is an accurate initial diagnosis at an early stage, improving the patient's survival chances. In this work, the first clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a-powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs is introduced. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a is realized without any nucleic acid amplification. With a readout time of 9 min and an overall process time of less than 4 h, a limit of detection of 10 pm is achieved, using a measuring volume of less than 0.6 µL. Furthermore, the feasibility of the biosensor platform to detect miR-19b in serum samples of children, suffering from brain cancer, is demonstrated. The validation of the obtained results with a standard quantitative real-time polymerase chain reaction method shows the ability of the electrochemical CRISPR-powered system to be a low-cost, easily scalable, and target amplification-free tool for nucleic acid based diagnostics.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Eletroquímica/instrumentação , Dispositivos Lab-On-A-Chip , MicroRNAs/análise , Sequência de Bases , Calibragem , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico
3.
Adv Mater ; 31(30): e1806739, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31094032

RESUMO

Disposable sensors are low-cost and easy-to-use sensing devices intended for short-term or rapid single-point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource-limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo- and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low-cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas e Procedimentos Diagnósticos/instrumentação , Equipamentos Descartáveis , Monitoramento Ambiental/instrumentação , Análise de Alimentos/instrumentação , Animais , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Vidro/química , Humanos , Membranas Artificiais , Nanoestruturas/química , Óptica e Fotônica/métodos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA