Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(37): e2101986, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337805

RESUMO

The design of dynamic, reconfigurable devices is crucial for the bottom-up construction of artificial biological systems. DNA can be used as an engineering material for the de-novo design of such dynamic devices. A self-assembled DNA origami switch is presented that uses the transition from double- to single-stranded DNA and vice versa to create and annihilate an entropic force that drives a reversible conformational change inside the switch. It is distinctively demonstrated that a DNA single-strand that is extended with 0.34 nm per nucleotide - the extension this very strand has in the double-stranded configuration - exerts a contractive force on its ends leading to large-scale motion. The operation of this type of switch is demonstrated via transmission electron microscopy, DNA-PAINT super-resolution microscopy and darkfield microscopy. The work illustrates the intricate and sometimes counter-intuitive forces that act in nanoscale physical systems that operate in fluids.


Assuntos
DNA/química , Nanoestruturas/química , DNA de Cadeia Simples/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
2.
J Phys Chem C Nanomater Interfaces ; 125(11): 5969-5981, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33828635

RESUMO

The reliable programmability of DNA origami makes it an extremely attractive tool for bottom-up self-assembly of complex nanostructures. Utilizing this property for the tuned arrangement of plasmonic nanoparticles holds great promise particularly in the field of biosensing. Plasmonic particles are beneficial for sensing in multiple ways, from enhancing fluorescence to enabling a visualization of the nanoscale dynamic actuation via chiral rearrangements. In this Perspective, we discuss the recent developments and possible future directions of DNA origami-enabled plasmonic sensing systems. We start by discussing recent advancements in the area of fluorescence-based plasmonic sensing using DNA origami. We then move on to surface-enhanced Raman spectroscopy sensors followed by chiral sensing, both utilizing DNA origami nanostructures. We conclude by providing our own views on the future prospects for plasmonic biosensors enabled using DNA origami.

3.
Nano Lett ; 20(3): 1571-1577, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083879

RESUMO

Molecular motor proteins form the basis of cellular dynamics. Recently, notable efforts have led to the creation of their DNA-based mimics, which can carry out complex nanoscale motion. However, such functional analogues have not yet been integrated or operated inside synthetic cells toward the goal of realizing artificial biological systems entirely from the bottom-up. In this Letter, we encapsulate and actuate DNA-assembled dynamic nanostructures inside cell-sized microfluidic compartments. These encapsulated DNA nanostructures not only exhibit structural reconfigurability owing to their pH-sensitive molecular switches upon external stimuli but also possess optical feedback enabled by the integrated plasmonic probes. In particular, we demonstrate the power of microfluidic compartmentalization for achieving on-chip plasmonic enantiomer separation and substrate filtration. Our work exemplifies that the two unique tools, droplet-based microfluidics and DNA technology, offering high precision on the microscale and nanoscale, respectively, can be brought together to greatly enrich the complexity and diversity of functional synthetic systems.


Assuntos
DNA/química , Ouro/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Nanoestruturas/química
4.
Sci Adv ; 5(11): eaax6023, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31819901

RESUMO

Coordinating functional parts to operate in concert is essential for machinery. In gear trains, meshed gears are compactly interlocked, working together to impose rotation or translation. In photosynthetic systems, a variety of biological entities in the thylakoid membrane interact with each other, converting light energy into chemical energy. However, coordinating individual parts to carry out regulated and coordinated motion within an artificial nanoarchitecture poses challenges, owing to the requisite control on the nanoscale. Here, we demonstrate DNA-directed nanosystems, which comprise hierarchically-assembled DNA origami filaments, fluorophores, and gold nanocrystals. These individual building blocks can execute independent, synchronous, or joint motion upon external inputs. These are optically monitored in situ using fluorescence spectroscopy, taking advantage of the sensitive distance-dependent interactions between the gold nanocrystals and fluorophores positioned on the DNA origami. Our work leverages the complexity of DNA-based artificial nanosystems with tailored dynamic functionality, representing a viable route towards technomimetic nanomachinery.


Assuntos
DNA/química , Movimento (Física) , Nanoestruturas , Nanotecnologia , Algoritmos , Ouro , Nanopartículas Metálicas , Modelos Teóricos , Nanoestruturas/química , Nanoestruturas/ultraestrutura
5.
Annu Rev Phys Chem ; 70: 275-299, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31112458

RESUMO

We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Estereoisomerismo , Ressonância de Plasmônio de Superfície
6.
Nano Lett ; 18(11): 7395-7399, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30383969

RESUMO

The DNA origami technique has empowered a new paradigm in plasmonics for manipulating light and matter at the nanoscale. This interdisciplinary field has witnessed vigorous growth, outlining a viable route to construct advanced plasmonic architectures with tailored optical properties. However, so far plasmonic systems templated by DNA origami have been restricted to respond to only single stimuli. Despite broad interest and scientific importance, thermal and aptamer-target regulations have not yet been widely utilized to reconfigure three-dimensional plasmonic architectures. In this Letter, we demonstrate a chiral plasmonic nanosystem integrated with split aptamers, which can respond to both thermal and aptamer-target regulations. We show that our dual-responsive system can be noninvasively tuned in a wide range of temperatures, readily correlating thermal control with optical signal changes. Meanwhile, our system can detect specific targets including adenosine triphosphate and cocaine molecules, which further enhance the optical response modulations and in turn influence the thermal tunability.

7.
Nat Commun ; 9(1): 1454, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654323

RESUMO

Sliding is one of the fundamental mechanical movements in machinery. In macroscopic systems, double-rack pinion machines employ gears to slide two linear tracks along opposite directions. In microscopic systems, kinesin-5 proteins crosslink and slide apart antiparallel microtubules, promoting spindle bipolarity and elongation during mitosis. Here we demonstrate an artificial nanoscopic analog, in which gold nanocrystals can mediate coordinated sliding of two antiparallel DNA origami filaments powered by DNA fuels. Stepwise and reversible sliding along opposite directions is in situ monitored and confirmed using fluorescence spectroscopy. A theoretical model including different energy transfer mechanisms is developed to understand the observed fluorescence dynamics. We further show that such sliding can also take place in the presence of multiple DNA sidelocks that are introduced to inhibit the relative movements. Our work enriches the toolbox of DNA-based nanomachinery, taking one step further toward the vision of molecular nanofactories.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Nanopartículas/química , Reagentes de Ligações Cruzadas , Transferência Ressonante de Energia de Fluorescência , Ouro/química , Cinesinas/química , Microscopia Eletrônica de Transmissão , Microtúbulos/química , Conformação de Ácido Nucleico , Propriedades de Superfície
8.
Sci Adv ; 3(4): e1602803, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439556

RESUMO

Selective configuration control of plasmonic nanostructures using either top-down or bottom-up approaches has remained challenging in the field of active plasmonics. We demonstrate the realization of DNA-assembled reconfigurable plasmonic metamolecules, which can respond to a wide range of pH changes in a programmable manner. This programmability allows for selective reconfiguration of different plasmonic metamolecule species coexisting in solution through simple pH tuning. This approach enables discrimination of chiral plasmonic quasi-enantiomers and arbitrary tuning of chiroptical effects with unprecedented degrees of freedom. Our work outlines a new blueprint for implementation of advanced active plasmonic systems, in which individual structural species can be programmed to perform multiple tasks and functions in response to independent external stimuli.

9.
J Am Chem Soc ; 138(17): 5495-8, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27082140

RESUMO

We show hierarchical assembly of plasmonic toroidal metamolecules that exhibit tailored optical activity in the visible spectral range. Each metamolecule consists of four identical origami-templated helical building blocks. Such toroidal metamolecules show a stronger chiroptical response than monomers and dimers of the helical building blocks. Enantiomers of the plasmonic structures yield opposite circular dichroism spectra. Experimental results agree well with the theoretical simulations. We also show that given the circular symmetry of the structures s distinct chiroptical response along their axial orientation can be uncovered via simple spin-coating of the metamolecules on substrates. Our work provides a new strategy to create plasmonic chiral platforms with sophisticated nanoscale architectures for potential applications such as chiral sensing using chemically based assembly systems.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Dicroísmo Circular
10.
Nano Lett ; 15(12): 8392-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26571209

RESUMO

Deterministic placement and dynamic manipulation of individual plasmonic nanoparticles with nanoscale precision feature an important step toward active nanoplasmonic devices with prescribed levels of performance and functionalities at optical frequencies. In this Letter, we demonstrate a plasmonic walker couple system, in which two gold nanorod walkers can independently or simultaneously perform stepwise walking powered by DNA hybridization along the same DNA origami track. We utilize optical spectroscopy to resolve such dynamic walking with nanoscale steps well below the optical diffraction limit. We also show that the number of walkers and the optical response of the system can be correlated. Our studies exemplify the power of plasmonics, when integrated with DNA nanotechnology for realization of advanced artificial nanomachinery with tailored optical functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA