Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Prostate ; 84(5): 417-425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193363

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is the most common urologic disease in aging males, affecting 50% of men over 50 and up to 80% of men over 80 years old. Its negative impact on health-related quality of life implores further investigation into its risk factors and strategies for effective management. Although the exact molecular mechanisms underlying pathophysiological onset of BPH are poorly defined, the current hypothesized contributors to BPH and lower urinary tract symptoms (LUTS) include aging, inflammation, metabolic syndrome, and hormonal changes. These processes are indirectly influenced by circadian rhythm disruption. In this article, we review the recent evidence on the potential association of light changes/circadian rhythm disruption and the onset of BPH and impact on treatment. METHODS: A narrative literature review was conducted using PubMed and Google Scholar to identify supporting evidence. The articles referenced ranged from 1975 to 2023. RESULTS: A clear relationship between BPH/LUTS and circadian rhythm disruption is yet to be established. However, common mediators influence both diseases, including proinflammatory states, metabolic syndrome, and hormonal regulation that can be asserted to circadian disruption. Some studies have identified a possible relationship between general LUTS and sleep disturbance, but little research has been done on the medical management of these diseases and how circadian rhythm disruption further affects treatment outcomes. CONCLUSIONS: There is evidence to implicate a relationship between BPH/LUTS and circadian rhythm disruptions. However, there is scarce literature on potential specific link in medical management of the disease and treatment outcomes with circadian rhythm disruption. Further study is warranted to provide BPH patients with insights into circadian rhythm directed appropriate interventions.


Assuntos
Sintomas do Trato Urinário Inferior , Síndrome Metabólica , Hiperplasia Prostática , Masculino , Humanos , Idoso de 80 Anos ou mais , Qualidade de Vida , Síndrome Metabólica/complicações , Sintomas do Trato Urinário Inferior/etiologia , Fatores de Risco
2.
medRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865297

RESUMO

Androgen Receptor (AR) signaling inhibitors, including enzalutamide, are treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), but resistance inevitably develops. Using metastatic samples from a prospective phase II clinical trial, we epigenetically profiled enhancer/promoter activities with H3K27ac chromatin immunoprecipitation followed by sequencing, before and after AR-targeted therapy. We identified a distinct subset of H3K27ac-differentially marked regions that associated with treatment responsiveness. These data were successfully validated in mCRPC patient-derived xenograft models (PDX). In silico analyses revealed HDAC3 as a critical factor that can drive resistance to hormonal interventions, which we validated in vitro . Using cell lines and mCRPC PDX tumors in vitro , we identified drug-drug synergy between enzalutamide and the pan-HDAC inhibitor vorinostat, providing therapeutic proof-of-concept. These findings demonstrate rationale for new therapeutic strategies using a combination of AR and HDAC inhibitors to improve patient outcome in advanced stages of mCRPC.

3.
Res Sq ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798177

RESUMO

Metastatic and high-risk localized prostate cancer respond to hormone therapy but outcomes vary. Following a pre-specified statistical plan, we used Cox models adjusted for clinical variables to test associations with survival of multi-gene expression-based classifiers from 781 patients randomized to androgen deprivation with or without abiraterone in the STAMPEDE trial. Decipher score was strongly prognostic (p<2×10-5) and identified clinically-relevant differences in absolute benefit, especially for localized cancers. In metastatic disease, classifiers of proliferation, PTEN or TP53 loss and treatment-persistent cells were prognostic. In localized disease, androgen receptor activity was protective whilst interferon signaling (that strongly associated with tumor lymphocyte infiltration) was detrimental. Post-Operative Radiation-Therapy Outcomes Score was prognostic in localized but not metastatic disease (interaction p=0.0001) suggesting the impact of tumor biology on clinical outcome is context-dependent on metastatic state. Transcriptome-wide testing has clinical utility for advanced prostate cancer and identified worse outcomes for localized cancers with tumor-promoting inflammation.

4.
Nat Biotechnol ; 40(11): 1624-1633, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697807

RESUMO

Single-cell RNA sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content. Here we present a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution. We estimate and validate TmS in 6,590 patient tumors across 15 cancer types, identifying significant inter-tumor variability. Across cancers, high TmS is associated with increased risk of disease progression and death. TmS is influenced by cancer-specific patterns of gene alteration and intra-tumor genetic heterogeneity as well as by pan-cancer trends in metabolic dysregulation. Taken together, our results indicate that measuring cell-type-specific total mRNA expression in tumor cells predicts tumor phenotypes and clinical outcomes.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Heterogeneidade Genética , Genômica , RNA Mensageiro/genética , Progressão da Doença
5.
Methods Mol Biol ; 2445: 99-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972988

RESUMO

Autophagy and autophagy-associated genes are implicated in a growing list of cellular, physiological, and pathophysiological processes and conditions. Therefore, it is ever more important to be able to reliably monitor and quantify autophagic activity. Whereas autophagic markers, such as LC3 can provide general indications about autophagy, specific and accurate detection of autophagic activity requires assessment of autophagic cargo flux. Here, we provide protocols on how to monitor bulk and selective autophagy by the use of inducible expression of exogenous probes based on the fluorescent coral protein Keima. To exemplify and demonstrate the power of this system, we provide data obtained by analyses of cytosolic and mitochondrially targeted Keima probes in human retinal epithelial cells treated with the mTOR-inhibitor Torin1 or with the iron chelator deferiprone (DFP). Our data indicate that Torin1 induces autophagic flux of cytosol and mitochondria to a similar degree, that is, compatible with induction of bulk autophagy, whereas DFP induces a highly selective form of mitophagy that efficiently excludes cytosol.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia
6.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283056

RESUMO

The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.

7.
J Pers Med ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922147

RESUMO

Guidelines for genetic testing have been established for multiple tumor types, frequently indicating the most confident molecularly targeted treatment options. However, considering the often-complex presentation of individual cancer patients, in addition to the combinatorial complexity and inherent uncertainties of molecular findings, deriving optimal treatment strategies frequently becomes very challenging. Here, we report a comprehensive analysis of a 68-year-old male with metastatic prostate cancer, encompassing pathology and MRI findings, transcriptomic results, and key genomics findings from whole-exome sequencing, both somatic aberrations and germline variants. We identify multiple somatic aberrations that are known to be enriched in prostate cancer, including a deletion of PTEN and a fusion transcript involving BRCA2. The gene expression patterns in the tumor biopsy were also strikingly similar to prostate tumor samples from TCGA. Furthermore, we detected multiple lines of evidence for homologous recombination repair deficiency (HRD), including a dominant contribution by mutational signature SBS3, which is specifically attributed to HRD. On the basis of the genomic and transcriptomic findings, and in light of the clinical case presentation, we discussed the personalized treatment options that exist for this patient and the various challenges that one faces in the process of translating high-throughput sequencing data towards treatment regimens.

8.
Cancers (Basel) ; 13(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925994

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second most common tumour diagnosed in men. Tumoral heterogeneity in PCa creates a significant challenge to develop robust prognostic markers and novel targets for therapy. An analysis of gene regulatory networks (GRNs) in PCa may provide insight into progressive PCa. Herein, we exploited a graph-based enrichment score to integrate data from GRNs identified in preclinical prostate orthografts and differentially expressed genes in clinical resected PCa. We identified active regulons (transcriptional regulators and their targeted genes) associated with PCa recurrence following radical prostatectomy. METHODS: The expression of known transcription factors and co-factors was analysed in a panel of prostate orthografts (n = 18). We searched for genes (as part of individual GRNs) predicted to be regulated by the highest number of transcriptional factors. Using differentially expressed gene analysis (on a per sample basis) coupled with gene graph enrichment analysis, we identified candidate genes and associated GRNs in PCa within the UTA cohort, with the most enriched regulon being JMJD6, which was further validated in two additional cohorts, namely EMC and ICGC cohorts. Cox regression analysis was performed to evaluate the association of the JMJD6 regulon activity with disease-free survival time in the three clinical cohorts as well as compared to three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). RESULTS: 1308 regulons were correlated to transcriptomic data from the three clinical prostatectomy cohorts. The JMJD6 regulon was identified as the top enriched regulon in the UTA cohort and again validated in the EMC cohort as the top-ranking regulon. In both UTA and EMC cohorts, the JMJD6 regulon was significantly associated with cancer recurrence. Active JMJD6 regulon also correlated with disease recurrence in the ICGC cohort. Furthermore, Kaplan-Meier analysis confirmed shorter time to recurrence in patients with active JMJD6 regulon for all three clinical cohorts (UTA, EMC and ICGC), which was not the case for three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). In multivariate analysis, the JMJD6 regulon status significantly predicted disease recurrence in the UTA and EMC, but not ICGC datasets, while none of the three published signatures significantly prognosticate for cancer recurrence. CONCLUSIONS: We have characterised gene regulatory networks from preclinical prostate orthografts and applied transcriptomic data from three clinical cohorts to evaluate the prognostic potential of the JMJD6 regulon.

9.
Mol Cancer Res ; 18(10): 1512-1521, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32611550

RESUMO

O-GlcNAc transferase (OGT) is a nutrient-sensitive glycosyltransferase that is overexpressed in prostate cancer, the most common cancer in males. We recently developed a specific and potent inhibitor targeting this enzyme, and here, we report a synthetic lethality screen using this compound. Our screen identified pan-cyclin-dependent kinase (CDK) inhibitor AT7519 as lethal in combination with OGT inhibition. Follow-up chemical and genetic approaches identified CDK9 as the major target for synthetic lethality with OGT inhibition in prostate cancer cells. OGT expression is regulated through retention of the fourth intron in the gene and CDK9 inhibition blunted this regulatory mechanism. CDK9 phosphorylates carboxy-terminal domain (CTD) of RNA Polymerase II to promote transcription elongation. We show that OGT inhibition augments effects of CDK9 inhibitors on CTD phosphorylation and general transcription. Finally, the combined inhibition of both OGT and CDK9 blocked growth of organoids derived from patients with metastatic prostate cancer, but had minimal effects on normal prostate spheroids. We report a novel synthetic lethal interaction between inhibitors of OGT and CDK9 that specifically kills prostate cancer cells, but not normal cells. Our study highlights the potential of combining OGT inhibitors with other treatments to exploit cancer-specific vulnerabilities. IMPLICATIONS: The primary contribution of OGT to cell proliferation is unknown, and in this study, we used a compound screen to indicate that OGT and CDK9 collaborate to sustain a cancer cell-specific pro-proliferative program. A better understanding of how OGT and CDK9 cross-talk will refine our understanding of this novel synthetic lethal interaction.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quinase 9 Dependente de Ciclina/metabolismo , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Humanos , Masculino , Terapia de Alvo Molecular , N-Acetilglucosaminiltransferases/metabolismo , Piperidinas/farmacologia , Neoplasias da Próstata/genética , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/farmacologia
10.
Cancers (Basel) ; 12(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605315

RESUMO

The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.

11.
Oncogene ; 39(30): 5241-5251, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555329

RESUMO

Long noncoding RNAs (lncRNAs) play pivotal roles in cancer development and progression, and some function in a highly cancer-specific manner. However, whether the cause of their expression is an outcome of a specific regulatory mechanism or nonspecific transcription induced by genome reorganization in cancer remains largely unknown. Here, we investigated a group of lncRNAs that we previously identified to be aberrantly expressed in prostate cancer (PC), called TPCATs. Our high-throughput real-time PCR experiments were integrated with publicly available RNA-seq and ChIP-seq data and revealed that the expression of a subset of TPCATs is driven by PC-specific transcription factors (TFs), especially androgen receptor (AR) and ETS-related gene (ERG). Our in vitro validations confirmed that AR and ERG regulated a subset of TPCATs, most notably for EPCART. Knockout of EPCART was found to reduce migration and proliferation of the PC cells in vitro. The high expression of EPCART and two other TPCATs (TPCAT-3-174133 and TPCAT-18-31849) were also associated with the biochemical recurrence of PC in prostatectomy patients and were independent prognostic markers. Our findings suggest that the expression of numerous PC-associated lncRNAs is driven by PC-specific mechanisms and not by random cellular events that occur during cancer development. Furthermore, we report three prospective prognostic markers for the early detection of advanced PC and show EPCART to be a functionally relevant lncRNA in PC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Fator 3-alfa Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/patologia , Interferência de RNA , Receptores Androgênicos/genética , Regulador Transcricional ERG/genética
12.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32365348

RESUMO

Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems. We observed that the dynamics between neuronal discharge in the LH and the sleep-wake states of mice with paternal deletion of Snord116 (PWScrm+/p-) are compromised. This abnormal state-dependent neuronal activity is paralleled by a significant reduction in OX neurons in the LH of mutant mice. Therefore, we propose that an imbalance between OX- and MCH-expressing neurons in the LH of mutant mice reflects a series of deficits manifested in the PWS, such as dysregulation of rapid eye movement (REM) sleep, food intake, and temperature control.


Assuntos
Comportamento Animal/fisiologia , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Orexinas/metabolismo , RNA Nucleolar Pequeno/genética , Sono/fisiologia , Animais , Modelos Animais de Doenças , Comportamento Alimentar , Região Hipotalâmica Lateral/fisiopatologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Camundongos , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/fisiopatologia
13.
Sci Rep ; 9(1): 13786, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551480

RESUMO

Inhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximately 20% of mCRPC patients develop disease with AR independent resistance mechanisms. In this study, we generated two anti-androgen and castration resistant prostate cancer cell models that do not rely on AR activity for growth despite robust AR expression (AR indifferent). They are thus resistant against all modern AR signalling inhibitors. Both cell lines display cross-resistance against the chemotherapeutic drug docetaxel due to MCL1 upregulation but remain sensitive to the PARP inhibitor olaparib and the pan-BCL inhibitor obatoclax. RNA-seq analysis of the anti-androgen resistant cell lines identified hyper-activation of the E2F cell-cycle master regulator as driver of AR indifferent growth, which was caused by deregulation of cyclin D/E, E2F1, RB1, and increased Myc activity. Importantly, mCRPC tissue samples with low AR activity displayed the same alterations and increased E2F activity. In conclusion, we describe two cellular models that faithfully mimic the acquisition of a treatment induced AR independent phenotype that is cross-resistant against chemotherapy and driven by E2F hyper-activation.


Assuntos
Antagonistas de Androgênios/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Mol Cancer Res ; 17(11): 2154-2168, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31395667

RESUMO

The incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen-deprivation therapy (ADT) or anti-androgens, and by activation of the ß2-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses. Here we found that in primary, treatment-naïve prostate cancers, ADRB2 mRNA was positively correlated with expression of luminal differentiation markers, and ADRB2 protein levels were inversely correlated with Gleason grade. ADRB2 mRNA was upregulated in metastatic prostate cancer, and progressively downregulated during ADT and t-NEPC emergence. In androgen-deprivated medium, high ADRB2 was required for LNCaP cells to undergo NEtD, measured as increased neurite outgrowth and expression of neuron differentiation and neuroendocrine genes. ADRB2 overexpression induced a neuroendocrine-like morphology in both androgen receptor (AR)-positive and -negative prostate cancer cell lines. ADRB2 downregulation in LNCaP cells increased canonical Wnt signaling, and GSK3α/ß inhibition reduced the expression of neuron differentiation and neuroendocrine genes. In LNCaP xenografts, more pronounced castration-induced NEtD was observed in tumors derived from high than low ADRB2 cells. In conclusion, high ADRB2 expression is required for ADT-induced NEtD, characterized by ADRB2 downregulation and t-NEPC emergence. IMPLICATIONS: This data suggest a potential application of ß-blockers to prevent cancer cells committed to a neuroendocrine lineage from evolving into t-NEPC.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Androgênios/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/genética , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Androgênios , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Transdiferenciação Celular , Regulação para Baixo , Humanos , Masculino , Gradação de Tumores , Metástase Neoplásica , Células Neuroendócrinas/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais , Regulação para Cima
15.
Theranostics ; 9(8): 2183-2197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149037

RESUMO

O-GlcNAc transferase (OGT) is overexpressed in aggressive prostate cancer. OGT modifies intra-cellular proteins via single sugar conjugation (O-GlcNAcylation) to alter their activity. We recently discovered the first fast-acting OGT inhibitor OSMI-2. Here, we probe the stability and function of the chromatin O-GlcNAc and identify transcription factors that coordinate with OGT to promote proliferation of prostate cancer cells. Methods: Chromatin immunoprecipitation (ChIP) coupled to sequencing (seq), formaldehyde-assisted isolation of regulatory elements, RNA-seq and reverse-phase protein arrays (RPPA) were used to study the importance of OGT for chromatin structure and transcription. Mass spectrometry, western blot, RT-qPCR, cell cycle analysis and viability assays were used to establish the role of OGT for MYC-related processes. Prostate cancer patient data profiled for both mRNA and protein levels were used to validate findings. Results: We show for the first time that OGT inhibition leads to a rapid loss of O-GlcNAc chromatin mark. O-GlcNAc ChIP-seq regions overlap with super-enhancers (SE) and MYC binding sites. OGT inhibition leads to down-regulation of SE-dependent genes. We establish the first O-GlcNAc chromatin consensus motif, which we use as a bait for mass spectrometry. By combining the proteomic data from oligonucleotide enrichment with O-GlcNAc and MYC ChIP-mass spectrometry, we identify host cell factor 1 (HCF-1) as an interaction partner of MYC. Inhibition of OGT disrupts this interaction and compromises MYC's ability to confer androgen-independent proliferation to prostate cancer cells. We show that OGT is required for MYC-mediated stabilization of mitotic proteins, including Cyclin B1, and/or the increased translation of their coding transcripts. This implies that increased expression of mRNA is not always required to achieve increased protein expression and confer aggressive phenotype. Indeed, high expression of Cyclin B1 protein has strong predictive value in prostate cancer patients (p=0.000014) while mRNA does not. Conclusions: OGT promotes SE-dependent gene expression. OGT activity is required for the interaction between MYC and HCF-1 and expression of MYC-regulated mitotic proteins. These features render OGT essential for the androgen-independent, MYC-driven proliferation of prostate cancer cells. Androgen-independency is the major mechanism of prostate cancer progression, and our study identifies OGT as an essential mediator in this process.


Assuntos
Proliferação de Células , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Ciclina B1/genética , Ciclina B1/metabolismo , Elementos Facilitadores Genéticos , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Masculino , Camundongos , N-Acetilglucosaminiltransferases/genética , Neoplasias da Próstata/genética , Ativação Transcricional
16.
Endocr Relat Cancer ; 26(4): R211-R235, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844748

RESUMO

Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular. These phenotypic changes are likely to result from epigenetic dysregulation. High-throughput sequencing applied to bulk samples and now to single cells has made it possible to study these processes in unprecedented detail. It is therefore timely to review the impact of chromatin relaxation and increased DNA accessibility on prostate cancer growth and drug resistance, and their effects on gene expression. In particular, we focus on the contribution of chromatin-associated proteins such as the bromodomain-containing proteins to chromatin relaxation. We discuss the consequence of this for androgen receptor transcriptional activity and briefly summarize wider gain-of-function effects on other oncogenic transcription factors and implications for more effective prostate cancer treatment.


Assuntos
Cromatina/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Humanos , Masculino , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo
17.
Cancer Cell ; 34(6): 996-1011.e8, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537516

RESUMO

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Transcriptoma , Adulto , Biomarcadores Tumorais/metabolismo , Evolução Molecular , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Risco , Sequenciamento Completo do Genoma/métodos
18.
Mol Cell Endocrinol ; 462(Pt A): 31-40, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28624514

RESUMO

Several oncogenic factors have been involved in prostate cancer progression. However, therapeutic approaches still focus on suppression of androgen receptor (AR) signaling. In fact, whereas the full-length AR incorporates a ligand-binding domain, which has become a drug target for competitive inhibitors, other transcription factors often do not have tractable binding pockets that aid drug development. Consequently drug development efforts have turned to transcription co-regulators, often chromatin-modifying enzymes or factors that bind to epigenetic modifications to chromatin. Bromodomain (BRD)-containing proteins fall into the latter category and significant progress has been made in developing small molecule inhibitors that target a particular subgroup of BRD-containing proteins known as the Bromodomain and extra-terminal (BET) family proteins. These inhibitors have proven particularly effective in inactivating c-Myc in lymphoma but more recently members of the BET family have also been identified as AR-interacting proteins raising the prospect of using these inhibitors as an alternative strategy for targeting AR-driven cancers. In this review we will provide an overview of BRD-containing proteins and the potential for exploiting them as biomarkers and drug targets in prostate cancer.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Cromatina/metabolismo , Humanos , Masculino , Domínios Proteicos , Receptores Androgênicos/metabolismo , Transdução de Sinais
19.
Sci Rep ; 7(1): 17978, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269934

RESUMO

Although second generation endocrine therapies have significantly improved survival, castration-resistant prostate cancer (CRPC) cells are eventually able to escape available hormonal treatments due to reactivation of androgen receptor (AR) signaling. Identification of novel, non-classical and druggable AR-target genes may provide new approaches to treat CRPC. Our previous analyses suggested that Aurora kinase A (AURKA) is regulated by androgens in prostate cancer cells that express high levels of AR. Here, we provide further evidence that AURKA is significantly overexpressed in AR-positive CRPC samples carrying amplification of AR gene and/or expressing AR in high levels. We also demonstrate androgen-induced AR binding in the intronic region of AURKA. The expression of AURKA is increased upon androgen stimulation in LNCaP-ARhi cells that express high levels of AR. The growth of the cells was also significantly inhibited by an AURKA specific inhibitor, alisertib (MLN8237). Together, these findings suggest that the expression of AURKA is regulated by androgen in prostate cancer cells that highly express AR, emphasizing its potential as a therapeutic target in patients with CRPC.


Assuntos
Androgênios/metabolismo , Aurora Quinase A/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Humanos , Masculino , Reação em Cadeia da Polimerase , Receptores Androgênicos/metabolismo
20.
Cell Rep ; 19(10): 2045-2059, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591577

RESUMO

Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/biossíntese , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Receptores Androgênicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Cromatina/genética , Cromatina/patologia , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Serina-Treonina Quinases/genética , Receptores Androgênicos/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA