Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14364, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38906940

RESUMO

Despite many interventions, science education remains highly inequitable throughout the world. Internet-enabled experimental learning has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to expose Latinx life science undergraduate students to introductory concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8000 km from the experimental site. Through this curriculum, the students completed an assignment testing bacteria contamination in water using LoCs. We showed that this approach was sufficient to reduce the students' fear of programming and increase their interest in continuing careers with a computer science component. Altogether, we conclude that LoC-based internet-enabled learning can become a powerful tool to train Latinx students and increase the diversity in STEM.


Assuntos
Internet , Estudantes , Humanos , Dispositivos Lab-On-A-Chip , Currículo , Disciplinas das Ciências Biológicas/educação
2.
Cell Rep Methods ; 4(1): 100686, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38218190

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.


Assuntos
Córtex Cerebral , Neurônios , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo , Neurotransmissores
3.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333351

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

4.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205466

RESUMO

Despite many interventions, science education remains highly inequitable throughout the world. Among all life sciences fields, Bioinformatics and Computational Biology suffer from the strongest underrepresentation of racial and gender minorities. Internet-enabled project-based learning (PBL) has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to train Latinx life science undergraduate students in concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8,000 km from the experimental site. We showed that this approach was sufficient to develop programming skills and increase the interest of students in continuing careers in Bioinformatics. Altogether, we conclude that LoC-based Internet-enabled PBL can become a powerful tool to train Latinx students and increase the diversity in STEM.

5.
Mikrochim Acta ; 189(12): 483, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36446842

RESUMO

Fentanyl is a powerful synthetic opioid used to treat severe pain. New administration routes toward its illegal consumption for recreational purposes pose a growing threat to public health, either due to misuse or abuse of this substance. As a result, the rapid qualitative and quantitative determination of fentanyl in biofluids is of great interest. A novel enzymatic biosensor based on adsorptive-stripping cyclic voltammetry is proposed as a cost-effective, reliable, and efficient device for fentanyl determination in urine samples. Disposable screen-printed carbon electrodes modified with multi-walled carbon nanotubes and cytochrome c were used to develop the testing platform. The electrochemical behavior of fentanyl exhibited a well-defined anodic wave around 0.66 V vs. pseudo reference electrode. The experimental conditions were optimized to obtain the best analytical response, and linear regression analysis of increasing concentration standards was applied to estimate the performance parameters. The results suggest a simple method with a wide linearity range, high sensitivity, low limits of detection (0.086 µg/mL) and quantification, and satisfactory precision (2.9% RSD). The feasibility and applicability of the voltammetric approach were assessed by fentanyl-spiked urine samples by standard additions calibration curves in two levels of enrichment with an accuracy of 92% and 100%.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Citocromos c , Fentanila , Eletrodos
6.
Rev. colomb. quím. (Bogotá) ; 50(1): 51-85, ene.-abr. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1289324

RESUMO

Resumen A 16 años del gran descubrimiento del grafeno los focos de atención vuelven a estar en este material con el reporte de su comportamiento superconductor dependiendo del apilado de sus capas. Sin embargo, su nombre durante estos últimos años no solo se ha relacionado a la superconductividad, sino que ha sido relacionado con una diversidad muy amplia de aplicaciones, en disciplinas muy diversas, entre las que cabe mencionar: materiales opto-electrónicos, electrodos para catálisis, dispositivos para tratamiento de desechos, biosensores, entre otros. Esto ha hecho que un gran número de grupos de investigación se hayan interesado no solo en estudiar sus propiedades, sino también en investigar nuevos métodos sintéticos que puedan ser escalables a niveles industriales, sin perder sus propiedades electrónicas y mecánicas. A pesar de los numerosos estudios y los recursos invertidos en grafeno no todas las aplicaciones han llegado a ser una realidad, en esta revisión se muestran algunas de las más exitosas.


Abstract 16 years after the great discovery of graphene, the focus and attention are again on this material after the report of its superconducting behavior depending on the stacking of its layers. The graphene has not only been related to superconductivity but has also been related to a wide diversity of applications, in very diverse disciplines. Among them, we can mention: Opto-electronic materials, electrodes for catalysis, devices for waste-water treatment, biosensors, batteries, and solar cells. This has caused a large number of research groups to be interested not only in the study of its properties, but also in the research of new synthetic methods that can be scaled to industrial levels, without losing its electronic and mechanical properties. Despite numerous studies and resources invested in graphene, not all applications have become a reality, some of the most successful are shown in this review.


Resumo 16 anos após a grande descoberta do grafeno, o foco e as atenções voltam a ser neste material com o relato de seu comportamento supercondutor em função do empilhamento de suas camadas. No entanto, seu nome nos últimos anos não tem sido apenas relacionado à supercondutividade, mas tem sido relacionado a uma diversidade muito ampla de aplicações, em disciplinas muito diversas. Entre eles podemos citar: materiais optoeletrônicos, eletrodos para catálise, dispositivos para tratamento de águas residuais, biossensores, baterias e células solares. Isso fez com que um grande número de grupos de pesquisa se interessassem não apenas em estudar suas propriedades, mas muitas pesquisas também foram feitas na geração de métodos sintéticos que pudessem ser dimensionados para níveis industriais, sem perder suas propriedades eletrônicas e mecânicas. Apesar dos inúmeros estudos e recursos investidos em grafeno, nem todas as aplicações se tornaram realidade, algumas das mais bem-sucedidas são apresentadas nesta revisão.

7.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009837

RESUMO

The synthetic cathinones mephedrone (4-MMC) and 4-methylethcathinone (4-MEC) are two designer drugs that represent the rise and fall effect of this drug category within the stimulants market and are still available in several countries around the world. As a result, the qualitative and quantitative determination of 'legal highs', and their mixtures, are of great interest. This work explores for the first time the spectroelectrochemical response of these substances by coupling cyclic voltammetry (CV) with Raman spectroscopy in a portable instrument. It was found that the stimulants exhibit a voltammetric response on a gold screen-printed electrode while the surface is simultaneously electro-activated to achieve a periodic surface-enhanced Raman spectroscopy (SERS) substrate with high reproducibility. The proposed method enables a rapid and reliable determination in which both substances can be selectively analyzed through the oxidation waves of the molecules and the characteristic bands of the electrochemical SERS (EC-SERS) spectra. The feasibility and applicability of the method were assessed in simulated seized drug samples and spiked synthetic urine. This time-resolved spectroelectrochemical technique provides a cost-effective and user-friendly tool for onsite screening of synthetic stimulants in matrices with low concentration analytes for forensic applications.


Assuntos
Ouro , Análise Espectral Raman , Eletrodos , Reprodutibilidade dos Testes
8.
Phys Chem Chem Phys ; 22(11): 6370-6375, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32140689

RESUMO

The electric field is an important parameter to vary in a single-molecule experiment, because it can directly affect the charge distribution around the molecule. Yet, performing such an experiment with a well-defined electric field for a model chemical reaction at an interface has proven to be extremely difficult. Here, by combining a graphene field-effect transistor and a gate-tunable scanning tunneling microscope (STM), we reveal how this strategy enables the intramolecular H atom transfer of a metal-free macrocycle to be controlled with an external field. Experiments and theory both elucidate how the energetic barrier to tautomerization decreases with increasing electric field. The consistency between the two results demonstrates the potential in using electric fields to engineer molecular switching mechanisms that are ubiquitous in nanoscale electronic devices.

9.
Phys Chem Chem Phys ; 21(23): 12485-12493, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31143918

RESUMO

Direct (photo)electrochemical production of non-fossil fuels from water and CO2 requires water-oxidation catalysis at near-neutral pH in the presence of appropriate anions that serve as proton acceptors. We investigate the largely enigmatic structural role of anions in water oxidation for the prominent cobalt-phosphate catalyst (CoCat), an amorphous and hydrated oxide material. Co3([(P/As)O]4)2·8H2O served, in conjunction with phosphate-arsenate exchange, as a synthetic model system. Its structural transformation was induced by prolonged operation at catalytic potentials and probed by X-ray absorption spectroscopy not only at the metal (Co), but for the first time also at the anion (As) K-edge. For initially isostructural microcrystals, anion exchange determined the amorphization process and final structure. Comparison to amorphous electrodeposited Co oxide revealed that in CoCat, the arsenate binds not only at oxide-layer edges, but also arsenic substitutes cobalt positions within the layered-oxide structure in an unusual AsO6 coordination. Our results show that in water oxidation catalysis at near-neutral pH, anion type and exchange dynamics correlate with the catalyst structure and redox properties.

10.
11.
Nano Lett ; 16(11): 6761-6766, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27696882

RESUMO

Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiOx-Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiOx layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

12.
J Am Chem Soc ; 136(39): 13482-5, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25185758

RESUMO

Chemical functionalization of graphene is achieved by hyperthermal reaction with azopyridine molecular ions. The one-step, room temperature process takes place in high vacuum (10(-7) mbar) using an electrospray ion beam deposition (ES-IBD) setup. For ion surface collisions exceeding a threshold kinetic energy of 165 eV, molecular cation beams of 4,4'-azobis(pyridine) covalently attach to chemical vapor deposited (CVD) graphene. A covalent functionalization degree of 3% of the carbon atoms of graphene is reached after 3-5 h of ion exposure of 2 × 10(14) azopyridinium/cm(2) of which 50% bind covalently. This facile approach for the controlled modification of graphene extends the scope of candidate species that would not otherwise react via existing conventional methods.

13.
Phys Chem Chem Phys ; 14(34): 11937-43, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847275

RESUMO

This combined experimental (STM, XPS) and molecular dynamics simulation study highlights the complex and subtle interplay of solvent effects and surface interactions on the 2-D self-assembly pattern of a Schiff-base macrocycle containing catechol moieties at the liquid-solid interface. STM imaging reveals a hexagonal ordering of the macrocycles at the n-tetradecane/Au(111) interface, compatible with a desorption of the lateral chains of the macrocycle. Interestingly, all the triangular-shaped macrocycles are oriented in the same direction, avoiding a close-packed structure. XPS experiments indicate the presence of a strong macrocycle-surface interaction. Also, MD simulations reveal substantial solvent effects. In particular, we find that co-adsorption of solvent molecules with the macrocycles induces desorption of lateral chains, and the solvent molecules act as spacers stabilizing the open self-assembly pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA